首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10061篇
  免费   729篇
  国内免费   7篇
  10797篇
  2022年   59篇
  2021年   115篇
  2020年   73篇
  2019年   86篇
  2018年   119篇
  2017年   95篇
  2016年   169篇
  2015年   340篇
  2014年   375篇
  2013年   538篇
  2012年   637篇
  2011年   632篇
  2010年   462篇
  2009年   381篇
  2008年   571篇
  2007年   548篇
  2006年   515篇
  2005年   526篇
  2004年   519篇
  2003年   514篇
  2002年   452篇
  2001年   113篇
  2000年   103篇
  1999年   133篇
  1998年   167篇
  1997年   98篇
  1996年   124篇
  1995年   110篇
  1994年   93篇
  1993年   111篇
  1992年   106篇
  1991年   86篇
  1990年   82篇
  1989年   71篇
  1988年   92篇
  1987年   74篇
  1986年   55篇
  1985年   80篇
  1984年   112篇
  1983年   94篇
  1982年   108篇
  1981年   93篇
  1980年   94篇
  1979年   73篇
  1978年   84篇
  1977年   84篇
  1976年   71篇
  1975年   63篇
  1974年   74篇
  1973年   64篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
121.
122.
This paper proposes to split the Australian Polyommatini genus Erysichton Fruhstorfer, 1916 into two genera on the basis of molecular, morphological and early stage behavioral attributes. The utility of reflective eye pattern as a taxonomic character is discussed and a neotype of Lycaena lineata Murray, 1874 is designated.  相似文献   
123.
The labeling of targeting peptides with (99m)Tc is a useful concept for the diagnosis of various diseases such as cancer. Although in research for at least one decade, only a very few radiopharmaceuticals based on peptides are in clinical use. The difficulty of labeling, and the resulting authenticity of the new vector, is largely responsible for this observation. In this overview, we present an alternate strategy based on the organometallic fac-[(99m)Tc(CO)(3)](+) core for introducing (99m)Tc in biomolecules in general and in peptides in particular. The three coordination sites available in [(99m)Tc(OH(2))(3)(CO)(3)](+) can be occupied with many different ligand types, pendant to a biomolecule and serving as the anchor group for labeling. This makes the appropriate choice difficult. We intend to present some useful concepts for the practice. Monodentate chelators are robust but bear the risk of multiple binding of biomolecules. Coordinating a bidentate ligand of choice prior to labeling bypasses this problem and enables a systematic drug discovery by variation of the bidentate ligand. Bidentate ligands attached to the biomolecule are stronger but occasionally require protection of the remaining site by a monodentate ligand. Both approaches refer to a mixed-ligand [2+1] approach. Tridentate chelators are the most efficient but need some protecting group chemistry in order to achieve selectivity for the coupling process. Examples with cysteine and histidine are presented. This article aims to provide versatile and reproducible approaches for the labeling of biomolecules while not focusing on particular systems. It should be left to the readers to derive a strategy for their own peptide.  相似文献   
124.
Endocytic internalization of the multidrug resistance-associated protein 2 (Mrp2) was previously suggested to be involved in estradiol-17beta-D-glucuronide (E217G)-induced cholestasis. Here we evaluated in the rat whether a similar phenomenon occurs with the bile salt export pump (Bsep) and the ability of DBcAMP to prevent it. E217G (15 micromol/kg i.v.) impaired bile salt (BS) output and induced Bsep internalization, as assessed by confocal microscopy and Western blotting. Neither cholestasis nor Bsep internalization occurred in TR- rats lacking Mrp2. DBcAMP (20 micromol/kg i.v.) partially prevented the decrease in bile flow and BS output and substantially prevented E217G-induced Bsep internalization. In hepatocyte couplets, E217G (50 microM) diminished canalicular accumulation of a fluorescent BS and decreased Bsep-associated fluorescence in the canalicular membrane; DBcAMP (10 microM) fully prevented both effects. In conclusion, our results suggest that changes in Bsep localization are involved in E217G-induced impairment of bile flow and BS transport and that DBcAMP prevents this effect by stimulating insertion of canalicular transporter-containing vesicles. Mrp2 is required for E217G to induce its harmful effect.  相似文献   
125.
Copper is both an essential element as a catalytic cofactor and a toxic element because of its redox properties. Once in the cell, Cu(I) binds to glutathione (GSH) and various thiol-rich proteins that sequester and/or exchange copper with other intracellular components. Among them, the Cu(I) chaperone Atx1 is known to deliver Cu(I) to Ccc2, the Golgi Cu–ATPase, in yeast. However, the mechanism for Cu(I) incorporation into Atx1 has not yet been unraveled. We investigated here a possible role of GSH in Cu(I) binding to Atx1. Yeast Atx1 was expressed in Escherichia coli and purified to study its ability to bind Cu(I). We found that with an excess of GSH [at least two GSH/Cu(I)], Atx1 formed a Cu(I)-bridged dimer of high affinity for Cu(I), containing two Cu(I) and two GSH, whereas no dimer was observed in the absence of GSH. The stability constants (log β) of the Cu(I) complexes measured at pH 6 were 15–16 and 49–50 for CuAtx1 and Cu2I(GS)2(Atx1)2, respectively. Hence, these results suggest that in vivo the high GSH concentration favors Atx1 dimerization and that Cu2I(GS)2(Atx1)2 is the major conformation of Atx1 in the cytosol.  相似文献   
126.
Etiolated Arabidopsis thaliana seedlings, lacking a functional prephenate dehydratase1 gene (PD1), also lack the ability to synthesize phenylalanine (Phe) and, as a consequence, phenylpropanoid pigments. We find that low doses of ultraviolet (UV)-C (254 nm) are lethal and low doses of UV-B cause severe damage to etiolated pd1 mutants, but not to wild-type (wt) seedlings. Furthermore, exposure to UV-C is lethal to etiolated gcr1 (encoding a putative G protein-coupled receptor in Arabidopsis) mutants and gpa1 (encoding the sole G protein alpha subunit in Arabidopsis) mutants. Addition of Phe to growth media restores wt levels of UV resistance to pd1 mutants. The data indicate that the Arabidopsis G protein-signalling pathway is critical to providing protection from UV, and does so via the activation of PD1, resulting in the synthesis of Phe. Cotyledons of etiolated pd1 mutants have proplastids (compared with etioplasts in wt), less cuticular wax and fewer long-chain fatty acids. Phe-derived pigments do not collect in the epidermal cells of pd1 mutants when seedlings are treated with UV, particularly at the cotyledon tip. Addition of Phe to the growth media restores a wt phenotype to pd1 mutants.  相似文献   
127.

Introduction

Suitable biomarkers are essential for therapeutic strategies in personalized medicine in terms of diagnosis as well as of prognosis. With highly specific biomarkers, it is possible, for example, to identify patients with poor prognosis, which enables early intervention and intensive treatment. The aim of this study was to identify and validate biomarkers and possible combinations for a prospective use in immunoscintigraphy, which may improve diagnosis of rheumatoid arthritis (RA) patients with consideration of inflammatory activity in the affected joints. Therefore, we tested several monoclonal antibodies (mAbs) directed against cellular-surface molecules on cells likely to be involved in the pathogenesis of RA.

Methods

Synovial tissue from patients with long-standing RA (accompanied by synovitis with varying states of current activity) and patients with acute non-RA arthritis were stained for surface molecules on different cell types by using fluorochrome-labeled antibodies. Tissue analysis was done by laser scanning cytometry (LSC), and statistical evaluation, by discriminant analysis and ROC analysis.

Results

CD11b, HLA-DR, CD90, and CD64 revealed significant differences between tissues from patients with RA and acute non-RA arthritis. Especially with the expression of CD64, both patient cohorts could be discriminated with high sensitivity and specificity. RA classification was improved by simultaneously investigating the expression of two or three different surface proteins, such as HLA-DR, CD90, and CD29 in the tissue. The simultaneous analysis of CD64 together with CD304 or the combination of CD11b and CD38 was suitable for the identification of RA patients with high current activity in synovitis.

Conclusions

In this study, we showed that LSC is a novel reliable method in biomarker prevalidation in RA. Hence, identified mAbs in situ may allow their potential use in in vivo approaches. Moreover, we proved that biomarker-combination analysis resulted in better discrimination than did single-marker analysis. Combinations of these markers make a novel and reliable panel for the discrimination between RA and acute non-RA arthritis. In addition, further expedient combinations may be novel promising biomarker panels to identify current activity in synovitis in RA.  相似文献   
128.
Two key features of atherosclerotic plaques that precipitate acute atherothrombotic vascular occlusion ("vulnerable plaques") are abundant inflammatory mediators and macrophages with excess unesterified, or "free," cholesterol (FC). Herein we show that FC accumulation in macrophages leads to the induction and secretion of two inflammatory cytokines, tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6). The increases in TNF-alpha and IL-6 mRNA and protein were mediated by FC-induced activation of the IkappaB kinase/NF-kappaB pathway as well as activation of MKK3/p38, Erk1/2, and JNK1/2 mitogen-activated protein kinases (MAPK). Activation of IkappaB kinase and JNK1/2 was needed for the induction of both cytokines. However, MKK3/p38 signaling was specifically involved in TNF-alpha induction, and Erk1/2 signaling was required for IL-6. Most interestingly, activation of all of the signaling pathways and induction of both cytokines required cholesterol trafficking to the endoplasmic reticulum (ER). The CHOP branch of the unfolded protein response, an ER stress pathway, was required for Erk1/2 activation and IL-6 induction. In contrast, one or more other ER-related pathways were responsible for activation of p38, JNK1/2, and IkappaB kinase/NF-kappaB and for the induction of TNF-alpha. These data suggest a novel scenario in which cytokines are induced in macrophages by endogenous cellular events triggered by excess ER cholesterol rather than by exogenous immune cell mediators. Moreover, this model may help explain the relationship between FC accumulation and inflammation in vulnerable plaques.  相似文献   
129.
The existing methods of biofabrication for vascular tissue engineering are still bioreactor-based, extremely expensive, laborious and time consuming and, furthermore, not automated, which would be essential for an economically successful large-scale commercialization. The advances in nanotechnology can bring additional functionality to vascular scaffolds, optimize internal vascular graft surface and even help to direct the differentiation of stem cells into the vascular cell phenotype. The development of rapid nanotechnology-based methods of vascular tissue biofabrication represents one of most important recent technological breakthroughs in vascular tissue engineering because it dramatically accelerates vascular tissue assembly and, importantly, also eliminates the need for a bioreactor-based scaffold cellularization process.  相似文献   
130.
Only one drug is currently available for the treatment and control of schistosomiasis and the increasing risk of selecting strains of schistosome that are resistant to praziquantel means that the development of new drugs is urgent. With this objective we have chosen to target the enzymes modifying histones and in particular the histone acetyltransferases and histone deacetylases (HDAC). Inhibitors of HDACs (HDACi) are under intense study as potential anti-cancer drugs and act via the induction of cell cycle arrest and/or apoptosis. Schistosomes like other parasites can be considered as similar to tumours in that they maintain an intense metabolic activity and rate of cell division that is outside the control of the host. We have shown that HDACi can induce apoptosis and death of schistosomes maintained in culture and have set up a consortium (Schistosome Epigenetics: Targets, Regulation, New Drugs) funded by the European Commission with the aim of developing inhibitors specific for schistosome histone modifying enzymes as novel lead compounds for drug development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号