首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102752篇
  免费   997篇
  国内免费   818篇
  2021年   115篇
  2020年   73篇
  2019年   87篇
  2018年   11927篇
  2017年   10742篇
  2016年   7600篇
  2015年   918篇
  2014年   644篇
  2013年   817篇
  2012年   4817篇
  2011年   13385篇
  2010年   12410篇
  2009年   8574篇
  2008年   10295篇
  2007年   11854篇
  2006年   757篇
  2005年   1010篇
  2004年   1471篇
  2003年   1523篇
  2002年   1215篇
  2001年   364篇
  2000年   260篇
  1999年   152篇
  1998年   174篇
  1997年   118篇
  1996年   133篇
  1995年   110篇
  1994年   99篇
  1993年   137篇
  1992年   126篇
  1991年   123篇
  1990年   89篇
  1989年   78篇
  1988年   109篇
  1987年   87篇
  1985年   80篇
  1984年   119篇
  1983年   111篇
  1982年   110篇
  1981年   93篇
  1980年   95篇
  1979年   73篇
  1978年   82篇
  1977年   84篇
  1976年   71篇
  1975年   68篇
  1974年   74篇
  1973年   64篇
  1972年   290篇
  1971年   299篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Selective releasing intracellular product in Triton X-100 micelle aqueous solution to prepare whole cell biocatalyst is a novel strategy for biosynthesis of Monascus pigments, in which cell suspension culture exhibits some advantages comparing with the corresponding growing cell submerged culture. In the present work, the nonionic surfactant Triton X-100 was successfully replaced by edible plant oils for releasing intracellular Monascus pigments. High concentration of Monascus pigments (with absorbance nearly 710 AU at 470 nm in the oil phase, normalized to the aqueous phase volume approximately 142 AU) was achieved by cell suspension culture in peanut oil–water two-phase system. Furthermore, the utilization of edible oil as extractant also fulfills the demand for application of Monascus pigments as natural food colorant.  相似文献   
992.
A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis.  相似文献   
993.
In this study, after the expression of a pyruvate carboxylase gene (PYC) cloned from Meyerozyma guilliermondii in a marine-derived yeast Yarrowia lipolytica SWJ-1b, a transformant PG86 obtained had much higher PYC activity than Y. lipolytica SWJ-1b. At the same time, the PYC gene expression and citric acid (CA) production by the transformant PG86 were also greatly enhanced. When glucose concentration in the medium was 60.0 g L?1, CA concentration formed by the transformant PG86 was 34.02 g L?1, leading to a CA yield of 0.57 g g?1 of glucose. During a 10-L fed-batch fermentation, the final concentration of CA was 101.0 ± 1.3 g L?1, the yield was 0.89 g g?1 of glucose, the productivity was 0.42 g L?1 h?1 and only 5.93 g L?1 reducing sugar was left in the fermented medium within 240 h of the fed-batch fermentation. HPLC analysis showed that most of the fermentation products were CA.  相似文献   
994.
Fluorescence spectroscopy in combination with multivariate statistical methods was employed as a tool for monitoring the manufacturing process of pertactin (PRN), one of the virulence factors of Bordetella pertussis utilized in whopping cough vaccines. Fluorophores such as amino acids and co-enzymes were detected throughout the process. The fluorescence data collected at different stages of the fermentation and purification process were treated employing principal component analysis (PCA). Through PCA, it was feasible to identify sources of variability in PRN production. Then, partial least square (PLS) was employed to correlate the fluorescence spectra obtained from pure PRN samples and the final protein content measured by a Kjeldahl test from these samples. In view that a statistically significant correlation was found between fluorescence and PRN levels, this approach could be further used as a method to predict the final protein content.  相似文献   
995.
Continuous, anaerobic fermentations of D-xylose were performed by Actinobacillus succinogenes 130Z in a custom, biofilm reactor at dilution rates of 0.05, 0.10 and 0.30 h?1. Succinic acid yields on xylose (0.55–0.68 g g?1), titres (10.9–29.4 g L?1) and productivities (1.5–3.4 g L?1 h?1) were lower than those of a previous study on glucose, but product ratios (succinic acid/acetic acid = 3.0–5.0 g g?1) and carbohydrate consumption rates were similar. Also, mass balance closures on xylose were up to 18.2 % lower than those on glucose. A modified HPLC method revealed pyruvic acid excretion at appreciable concentrations (1.2–1.9 g L?1) which improved the mass balance closure by up to 16.8 %. Furthermore, redox balances based on the accounted xylose consumed and the excreted metabolites, indicated an overproduction of reducing power. The oxidative pentose phosphate pathway was shown to be a plausible source of the additional reducing power.  相似文献   
996.
The minimization of costs in the distillation step of lignocellulosic ethanol production requires the use of a high solids loading during the enzymatic hydrolysis to obtain a more concentrated glucose liquor. However, this increase in biomass can lead to problems including increased mass and heat transfer resistance, decreased cellulose conversion, and increased apparent viscosity with the associated increase in power consumption. The use of fed-batch operation offers a promising way to circumvent these problems. In this study, one batch and four fed-batch strategies for solids and/or enzyme feeding during the enzymatic hydrolysis of sugarcane bagasse were evaluated. Determinations of glucose concentration, power consumption, and apparent viscosity were made throughout the experiments, and the different strategies were compared in terms of energy efficiency (mass of glucose produced according to the energy consumed). The best energy efficiency was obtained for the strategy in which substrate and enzyme were added simultaneously (0.35 kgglucose kWh?1). This value was 52 % higher than obtained in batch operation.  相似文献   
997.
Schizochytrium is a marine microalga that requires high concentrations of sea salt for growth, although problems arise with significant amounts of chloride ions in the culture medium, which corrodes the fermenters. In this work, we evaluated that cell growth and docosahexaenoic acid (DHA) production can be improved when using 1 % (w/v) sodium sulfate instead of 2 % (w/v) sea salt in the culture medium for Schizochytrium sp. S056. In practice, the use of sodium sulfate as the sodium salt led to chloride ion levels in the medium that can be completely removed, thus avoiding fermenter corrosion during Schizochytrium sp. S056 growth, reducing cost and increasing DHA production, and simplifying the disposal of fermentation wastewater. Additionally, we demonstrated that the osmolality of growth media did not play a crucial role in the production of DHA. These findings may be significantly important to companies involved in production of PUFAs by marine microbes.  相似文献   
998.
Effects of oxygen transfer on recombinant protein production by Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter were investigated. Recombinant glucose isomerase was chosen as the model protein. Two groups of oxygen transfer strategies were applied, one of which was based on constant oxygen transfer rate where aeration rate was Q O/V = 3 and 10 vvm, and agitation rate was N = 900 min?1; while the other one was based on constant dissolved oxygen concentrations, C DO = 5, 10, 15, 20 and 40 % in the fermentation broth, by using predetermined exponential glucose feeding with μ o = 0.15 h?1. The highest cell concentration was obtained as 44 g L?1 at t = 9 h of the glucose fed-batch phase at C DO = 20 % operation while the highest volumetric and specific enzyme activities were obtained as 4440 U L?1 and 126 U g?1 cell, respectively at C DO = 15 % operation. Investigation of specific enzyme activities revealed that keeping C DO at 15 % was more advantageous with an expense of relatively higher by-product formation and lower specific cell growth rate. For this strategy, the highest oxygen transfer coefficient and oxygen uptake rate were K L a = 0.045 s?1 and OUR = 8.91 mmol m?3 s?1, respectively.  相似文献   
999.
In this investigation, copper was bioleached from a low-grade chalcopyrite ore using a chloride-containing lixiviant. In this regard, firstly, the composition of the bacterial culture media was designed to control the cost in commercial application. The bacterial culture used in this process was acclimated to the presence of chloride in the lixiviant. Practically speaking, the modified culture helped the bio-heap-leaching system operate in the chloridic media. Compared to the copper recovery from the low-grade chalcopyrite by bioleaching in the absence of chloride, bioleaching in the presence of chloride resulted in improved copper recovery. The composition of the lixiviant used in this study was a modification with respect to the basal salts in 9 K medium to optimize the leaching process. When leaching the ore in columns, 76.81 % Cu (based on solid residues of bioleaching operation) was recovered by staged leaching with lixiviant containing 34.22 mM NaCl. The quantitative findings were supported by SEM/EDS observations, X-ray elemental mapping, and mineralogical analysis of the ore before and after leaching. Finally, Adaptive neuro-fuzzy inference system (ANFIS) was used to simulate the operational parameters affecting the bioleaching operation in chloride–sulfate system.  相似文献   
1000.
The whole-cell immobilization on chitosan matrix was evaluated. Bacillus sp., as producer of CGTase, was grown in solid-state and batch cultivation using three types of starches (cassava, potato and cornstarch). Biomass growth and substrate consumption were assessed by flow cytometry and modified phenol–sulfuric acid assays, respectively. Qualitative analysis of CGTase production was determined by colorless area formation on solid culture containing phenolphthalein. Scanning electron microscopy (SEM) analysis demonstrated that bacterial cells were immobilized on chitosan matrix efficiently. Free cells reached very high numbers during batch culture while immobilized cells maintained initial inoculum concentration. The maximum enzyme activity achieved by free cells was 58.15 U ml?1 (36 h), 47.50 U ml?1 (36 h) and 68.36 U ml?1 (36 h) on cassava, potato and cornstarch, respectively. CGTase activities for immobilized cells were 82.15 U ml?1 (18 h) on cassava, 79.17 U ml?1 (12 h) on potato and 55.37 U ml?1 (in 6 h and max 77.75 U ml?1 in 36 h) on cornstarch. Application of immobilization technique increased CGTase activity significantly. The immobilized cells produced CGTase with higher activity in a shorter fermentation time comparing to free cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号