首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25443篇
  免费   15513篇
  国内免费   2篇
  2023年   15篇
  2022年   89篇
  2021年   396篇
  2020年   2193篇
  2019年   3721篇
  2018年   3825篇
  2017年   4099篇
  2016年   4079篇
  2015年   4010篇
  2014年   3638篇
  2013年   4056篇
  2012年   1737篇
  2011年   1449篇
  2010年   3015篇
  2009年   1770篇
  2008年   646篇
  2007年   238篇
  2006年   238篇
  2005年   282篇
  2004年   269篇
  2003年   261篇
  2002年   251篇
  2001年   255篇
  2000年   187篇
  1999年   139篇
  1998年   11篇
  1997年   10篇
  1996年   10篇
  1995年   9篇
  1994年   8篇
  1993年   7篇
  1992年   7篇
  1991年   6篇
  1990年   2篇
  1989年   2篇
  1988年   8篇
  1986年   3篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1976年   2篇
  1973年   1篇
  1970年   1篇
  1968年   1篇
  1965年   1篇
  1889年   1篇
  1882年   1篇
  1881年   1篇
  1873年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
191.
Reading disabilities (RD) are the most common neurocognitive disorder, affecting 5% to 17% of children in North America. These children often have comorbid neurodevelopmental/psychiatric disorders, such as attention deficit/hyperactivity disorder (ADHD). The genetics of RD and their overlap with other disorders is incompletely understood. To contribute to this, we performed a genome‐wide association study (GWAS) for word reading. Then, using summary statistics from neurodevelopmental/psychiatric disorders, we computed polygenic risk scores (PRS) and used them to predict reading ability in our samples. This enabled us to test the shared aetiology between RD and other disorders. The GWAS consisted of 5.3 million single nucleotide polymorphisms (SNPs) and two samples; a family‐based sample recruited for reading difficulties in Toronto (n = 624) and a population‐based sample recruited in Philadelphia [Philadelphia Neurodevelopmental Cohort (PNC)] (n = 4430). The Toronto sample SNP‐based analysis identified suggestive SNPs (P ~ 5 × 10?7) in the ARHGAP23 gene, which is implicated in neuronal migration/axon pathfinding. The PNC gene‐based analysis identified significant associations (P < 2.72 × 10?6) for LINC00935 and CCNT1, located in the region of the KANSL2/CCNT1/LINC00935/SNORA2B/SNORA34/MIR4701/ADCY6 genes on chromosome 12q, with near significant SNP‐based analysis. PRS identified significant overlap between word reading and intelligence (R2 = 0.18, P = 7.25 × 10?181), word reading and educational attainment (R2 = 0.07, P = 4.91 × 10?48) and word reading and ADHD (R2 = 0.02, P = 8.70 × 10?6; threshold for significance = 7.14 × 10?3). Overlap was also found between RD and autism spectrum disorder (ASD) as top‐ranked genes were previously implicated in autism by rare and copy number variant analyses. These findings support shared risk between word reading, cognitive measures, educational outcomes and neurodevelopmental disorders, including ASD.  相似文献   
192.
Sepsis is the most common cause of death in intensive care units. This study investigated the circular RNA (circRNA) and mRNA expression profiles and functional networks of the aortic tissue in sepsis. We established a lipopolysaccharide (LPS)‐induced rat sepsis model. High‐throughput sequencing was performed on the aorta tissue to identify differentially expressed (DE) circRNAs and mRNAs, which were validated by real‐time quantitative polymerase chain reaction (RT‐qPCR). Bioinformatic analysis was carried out and coding and non‐coding co‐expression (CNC) and competing endogenous RNA (ceRNA) regulatory networks were constructed to investigate the mechanisms. In total, 373 up‐regulated and 428 down‐regulated circRNAs and 2063 up‐regulated and 2903 down‐regulated mRNAs were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of mRNAs showed that the down‐regulated genes were mainly enriched in the process of energy generation. CNC and ceRNA regulatory networks were constructed with seven DE circRNAs. The results of functional enrichment analysis of CNC target genes revealed the important role of circRNAs in inflammatory response. The ceRNA network also highlighted the significant enrichment in calcium signalling pathway. Significant alterations in circRNAs and mRNAs were observed in the aortic tissue of septic rats. In addition, CNC and ceRNA networks were established.  相似文献   
193.
Increased expression and activity of cardiac and circulating cathepsin D and soluble fms‐like tyrosine kinase‐1 (sFlt‐1) have been demonstrated to induce and promote peripartum cardiomyopathy (PPCM) via promoting cleavage of 23‐kD prolactin (PRL) to 16‐kD PRL and neutralizing vascular endothelial growth factor (VEGF), respectively. We hypothesized that activation of Hes1 is proposed to suppress cathepsin D via activating Stat3, leading to alleviated development of PPCM. In the present study, we aimed to investigate the role of Notch1/Hes1 pathway in PPCM. Pregnant mice between prenatal 3 days and postpartum 3 weeks were fed with LY‐411575 (a notch inhibitor, 10 mg/kg/d). Ventricular function and pathology were evaluated by echocardiography and histological analysis. Western blotting analysis was used to examine the expression at the protein level. The results found that inhibition of Notch1 significantly promoted postpartum ventricular dilatation, myocardial hypertrophy and myocardial interstitial fibrosis and suppressed myocardial angiogenesis. Western blotting analysis showed that inhibition of Notch1 markedly increased cathepsin D and sFlt‐1, reduced Hes1, phosphorylated Stat3 (p‐Stat3), VEGFA and PDGFB, and promoted cleavage of 23k‐D PRL to 16‐kD PRL. Collectively, inhibition of Notch1/Hes1 pathway induced and promoted PPCM via increasing the expressions of cathepsin D and sFlt‐1. Notch1/Hes1 was a promising target for prevention and therapeutic regimen of PPCM.  相似文献   
194.
Serpinb6b is a novel member of Serpinb family and found in germ and somatic cells of mouse gonads, but its physiological function in uterine decidualization remains unclear. The present study revealed that abundant Serpinb6b was noted in decidual cells, and advanced the proliferation and differentiation of stromal cells, indicating a creative role of Serpinb6b in uterine decidualization. Further analysis found that Serpinb6b modulated the expression of Mmp2 and Mmp9. Meanwhile, Serpinb6b was identified as a target of Bmp2 regulation in stromal differentiation. Treatment with rBmp2 resulted in an accumulation of intracellular cAMP level whose function in this differentiation program was mediated by Serpinb6b. Addition of PKA inhibitor H89 impeded the Bmp2 induction of Serpinb6b, whereas 8‐Br‐cAMP rescued the defect of Serpinb6b expression elicited by Bmp2 knock‐down. Attenuation of Serpinb6b greatly reduced the induction of constitutive Wnt4 activation on stromal cell differentiation. By contrast, overexpression of Serpinb6b prevented this inhibition of differentiation process by Wnt4 siRNA. Moreover, blockage of Wnt4 abrogated the up‐regulation of cAMP on Serpinb6b. Collectively, Serpinb6b mediates uterine decidualization via Mmp2/9 in response to Bmp2/cAMP/PKA/Wnt4 pathway.  相似文献   
195.
Fine particulate matter (PM2.5) is the primary air pollutant that is able to induce airway injury. Compelling evidence has shown the involvement of IL‐17A in lung injury, while its contribution to PM2.5‐induced lung injury remains largely unknown. Here, we probed into the possible role of IL‐17A in mouse models of PM2.5‐induced lung injury. Mice were instilled with PM2.5 to construct a lung injury model. Flow cytometry was carried out to isolate γδT and Th17 cells. ELISA was adopted to detect the expression of inflammatory factors in the supernatant of lavage fluid. Primary bronchial epithelial cells (mBECs) were extracted, and the expression of TGF signalling pathway‐, autophagy‐ and PI3K/Akt/mTOR signalling pathway‐related proteins in mBECs was detected by immunofluorescence assay and Western blot analysis. The mitochondrial function was also evaluated. PM2.5 aggravated the inflammatory response through enhancing the secretion of IL‐17A by γδT/Th17 cells. Meanwhile, PM2.5 activated the TGF signalling pathway and induced EMT progression in bronchial epithelial cells, thereby contributing to pulmonary fibrosis. Besides, PM2.5 suppressed autophagy of bronchial epithelial cells by up‐regulating IL‐17A, which in turn activated the PI3K/Akt/mTOR signalling pathway. Furthermore, IL‐17A impaired the energy metabolism of airway epithelial cells in the PM2.5‐induced models. This study suggested that PM2.5 could inhibit autophagy of bronchial epithelial cells and promote pulmonary inflammation and fibrosis by inducing the secretion of IL‐17A in γδT and Th17 cells and regulating the PI3K/Akt/mTOR signalling pathway.  相似文献   
196.
197.
Oral squamous cell carcinoma (OSCC) is the most common malignant tumour in the oral and maxillofacial region. Numerous cancers share ten common traits (“hallmarks”) that govern the transformation of normal cells into cancer cells. Long non‐coding RNAs (lncRNAs) are important factors that contribute to tumorigenesis. However, very little is known about the cooperative relationships between lncRNAs and cancer hallmark‐associated genes in OSCC. Through integrative analysis of cancer hallmarks, somatic mutations, copy number variants (CNVs) and expression, some OSCC‐specific cancer hallmark‐associated genes and lncRNAs are identified. A computational framework to identify gene and lncRNA cooperative regulation pairs (GLCRPs) associated with different cancer hallmarks is developed based on the co‐expression and co‐occurrence of mutations. The distinct and common features of ten cancer hallmarks based on GLCRPs are characterized in OSCC. Cancer hallmark insensitivity to antigrowth signals and self‐sufficiency in growth signals are shared by most GLCRPs in OSCC. Some key GLCRPs participate in many cancer hallmarks in OSCC. Cancer hallmark‐associated GLCRP networks have complex patterns and specific functions in OSCC. Specially, some key GLCRPs are associated with the prognosis of OSCC patients. In summary, we generate a comprehensive landscape of cancer hallmark‐associated GLCRPs that can act as a starting point for future functional explorations, the identification of biomarkers and lncRNA‐based targeted therapy in OSCC.  相似文献   
198.
199.
The growth arrest and DNA damage‐inducible beta (Gadd45β) protein have been associated with various cellular functions, but its role in progressive renal disease is currently unknown. Here, we examined the effect of Gadd45β deletion on cell proliferation and apoptosis, inflammation, and renal fibrosis in an early chronic kidney disease (CKD) mouse model following unilateral ureteral obstruction (UUO). Wild‐type (WT) and Gadd45β‐knockout (KO) mice underwent either a sham operation or UUO and the kidneys were sampled eight days later. A histological assay revealed that ablation of Gadd45β ameliorated UUO‐induced renal injury. Cell proliferation was higher in Gadd45β KO mouse kidneys, but apoptosis was similar in both genotypes after UUO. Expression of pro‐inflammatory cytokines after UUO was down‐regulated in the kidneys from Gadd45β KO mice, whereas UUO‐mediated immune cell infiltration remained unchanged. The expression of pro‐inflammatory cytokines in response to LPS stimulation decreased in bone marrow‐derived macrophages from Gadd45β KO mice compared with that in WT mice. Importantly, UUO‐induced renal fibrosis was ameliorated in Gadd45β KO mice unlike in WT mice. Gadd45β was involved in TGF‐β signalling pathway regulation in kidney fibroblasts. Our findings demonstrate that Gadd45β plays a crucial role in renal injury and may be a therapeutic target for the treatment of CKD.  相似文献   
200.
Vascular endothelial growth factor (VEGF) is a well‐known angiogenic factor, however its ability in promoting therapeutic angiogenesis following myocardial infarction (MI) is limited. Here, we aimed to investigate whether dual treatment with insulin‐like growth factor binding protein‐4 (IGFBP‐4), an agent that protects against early oxidative damage, can be effective in enhancing the therapeutic effect of VEGF following MI. Combined treatment with IGFBP‐4 enhanced VEGF‐induced angiogenesis and prevented cell damage via enhancing the expression of a key angiogenic factor angiopoietin‐1. Dual treatment with the two agents synergistically decreased cardiac fibrosis markers collagen‐I and collagen‐III following MI. Importantly, while the protective action of IGFBP‐4 occurs at an early stage of ischemic injury, the action of VEGF occurs at a later stage, at the onset angiogenesis. Our findings demonstrate that VEGF treatment alone is often not enough to protect against oxidative stress and promote post‐ischemic angiogenesis, whereas the combined treatment with IGFBP4 and VEGF can utilize the dual roles of these agents to effectively protect against ischemic and oxidative injury, and promote angiogenesis. These findings provide important insights into the roles of these agents in the clinical setting, and suggest new strategies in the treatment of ischemic heart disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号