首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   9篇
  2021年   8篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   6篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   12篇
  2011年   7篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   8篇
  2006年   10篇
  2005年   8篇
  2004年   11篇
  2003年   3篇
  2002年   6篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   12篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1990年   1篇
  1986年   1篇
  1982年   3篇
  1980年   2篇
  1977年   3篇
  1976年   2篇
  1972年   2篇
  1971年   1篇
排序方式: 共有157条查询结果,搜索用时 46 毫秒
41.
42.
43.
Our visual system segments images into objects and background. Figure-ground segregation relies on the detection of feature discontinuities that signal boundaries between the figures and the background and on a complementary region-filling process that groups together image regions with similar features. The neuronal mechanisms for these processes are not well understood and it is unknown how they depend on visual attention. We measured neuronal activity in V1 and V4 in a task where monkeys either made an eye movement to texture-defined figures or ignored them. V1 activity predicted the timing and the direction of the saccade if the figures were task relevant. We found that boundary detection is an early process that depends little on attention, whereas region filling occurs later and is facilitated by visual attention, which acts in an object-based manner. Our findings are explained by a model with local, bottom-up computations for boundary detection and feedback processing for region filling.  相似文献   
44.
In Arabidopsis (Arabidopsis thaliana), the blue light photoreceptor phototropins (phot1 and phot2) fine-tune the photosynthetic status of the plant by controlling several important adaptive processes in response to environmental light variations. These processes include stem and petiole phototropism (leaf positioning), leaf flattening, stomatal opening, and chloroplast movements. The PHYTOCHROME KINASE SUBSTRATE (PKS) protein family comprises four members in Arabidopsis (PKS1–PKS4). PKS1 is a novel phot1 signaling element during phototropism, as it interacts with phot1 and the important signaling element NONPHOTOTROPIC HYPOCOTYL3 (NPH3) and is required for normal phot1-mediated phototropism. In this study, we have analyzed more globally the role of three PKS members (PKS1, PKS2, and PKS4). Systematic analysis of mutants reveals that PKS2 (and to a lesser extent PKS1) act in the same subset of phototropin-controlled responses as NPH3, namely leaf flattening and positioning. PKS1, PKS2, and NPH3 coimmunoprecipitate with both phot1-green fluorescent protein and phot2-green fluorescent protein in leaf extracts. Genetic experiments position PKS2 within phot1 and phot2 pathways controlling leaf positioning and leaf flattening, respectively. NPH3 can act in both phot1 and phot2 pathways, and synergistic interactions observed between pks2 and nph3 mutants suggest complementary roles of PKS2 and NPH3 during phototropin signaling. Finally, several observations further suggest that PKS2 may regulate leaf flattening and positioning by controlling auxin homeostasis. Together with previous findings, our results indicate that the PKS proteins represent an important family of phototropin signaling proteins.Plants constantly monitor the properties of light in their natural environment to optimize light capture for photosynthesis and growth (e.g. shade avoidance and phototropism) and to time important developmental transitions (e.g. germination and flowering; Neff et al., 2000; Briggs and Christie, 2002; Franklin and Whitelam, 2005). To do so, plants have a multitude of photoreceptors that allow them to sense changes in light period, direction, wavelength composition, and intensity. The main types of photoreceptors are the red/far-red light-absorbing phytochromes and the UV-A/blue light-sensing phototropins, cryptochromes, and Zeitlupe protein families (Chen et al., 2004; Jiao et al., 2007; Demarsy and Fankhauser, 2009). The signaling pathways triggered by these photoreceptors are integrated to fine-tune responses to ever-changing light environments (Casal, 2000; Franklin and Whitelam, 2004; Iino, 2006).In Arabidopsis (Arabidopsis thaliana), phototropin1 (phot1) and its paralog phot2 were discovered as primary photoreceptors for blue light-induced hypocotyl phototropism and for high light-induced chloroplast avoidance movements, respectively (Liscum and Briggs, 1995; Huala et al., 1997; Jarillo et al., 2001; Kagawa et al., 2001). Subsequent studies have shown that phototropins regulate a wide set of physiological and developmental responses, including chloroplast accumulation under low light, stomatal opening, leaf flattening, and phototropism of the root, inflorescence stem, and petiole (Sakai et al., 2001). Thus, phototropins are proposed to optimize the photosynthetic potential of plants, particularly under unfavorable environments such as extremely high light, weak illumination, and drought (Kasahara et al., 2002; Takemiya et al., 2005; Galen et al., 2007).Phot1 and phot2 regulate these processes selectively and in a fluence-dependent manner. Phot1 mediates the chloroplast accumulation, leaf positioning, and phototropic responses under very low light (Demarsy and Fankhauser, 2009). Under higher light intensities, the phot2 pathway becomes activated and acts redundantly with phot1 in these processes (Sakai et al., 2001). Phot2 also specifically controls the chloroplast avoidance response induced by high light (Jarillo et al., 2001; Kagawa et al., 2001). For stomatal opening, phot1 and phot2 act redundantly over a broad range of light intensity (Kinoshita et al., 2001; Doi et al., 2004).Phototropins are Ser/Thr kinases belonging to the AGC family (for cAMP-dependent protein kinase, cGMP-dependent protein kinase, and phospholipids-dependent protein kinase C; Bogre et al., 2003). Two LOV (for light, oxygen, or voltage) photosensory domains that bind to the blue light-absorbing chromophore FMN regulate the kinase activity (Christie, 2007). Phototropin activation and early signaling events at the level of the photoreceptor itself have been extensively studied (Tokutomi et al., 2008; Demarsy and Fankhauser, 2009). However, downstream signaling is less well understood. Light-induced phot1 autophosphorylation has recently been shown to be an essential signaling event, but apart from the photoreceptor itself, no direct substrate for the kinase activity has been identified in planta (Inoue et al., 2008b; Sullivan et al., 2008). Nonetheless, several proteins are known to interact with phot1. These include Broad-Complex, Tramtrack, Bric-à-Brac (BTB) proteins belonging to the 33-member NONPHOTOTROPIC HYPOCOTYL3 (NPH3)/ROOT PHOTOTROPISM2-LIKE (NRL) subfamily, 14-3-3 proteins, and ADP-ribosylation factors (members of the Ras superfamily of GTP-binding proteins that play important roles in the assembly and disassembly of coat proteins associated with driving vesicle budding and fusion; Motchoulski and Liscum, 1999; Sullivan et al., 2009).Genetic experiments showed that NPH3 is required for phot1- and phot2-mediated phototropism and for phot1-controlled leaf positioning but is not involved in stomatal opening or chloroplast movements (Inada et al., 2004; Inoue et al., 2008a). In addition, RPT2 acts in the phot1-induced phototropic response and stomatal opening but not in chloroplast relocation or phot2-induced movements. RPT2 can associate with phot1 in vitro and in vivo, but there is no evidence for a direct interaction with phot2 (Inada et al., 2004). NPH3 is also known to interact with phot1 in vivo, but an interaction with phot2 has not been reported (Motchoulski and Liscum, 1999; Lariguet et al., 2006). Thus, phototropin signaling is believed to branch quickly, and phot1 and phot2 appear to recruit different signaling components to trigger distinct physiological processes. NPH3 and RPT2 are proposed to mediate protein scaffolding using their protein-protein interaction domains (BTB/Pox virus and Zinc finger as well as coiled coil) and by these means may provide signaling specificity via interaction with specific targets in different tissues and subcellular compartments (Celaya and Liscum, 2005). The phototropins may regulate such interactions by modifying the phosphorylation status of the signaling protein (e.g. NPH3 and 14-3-3 proteins; Pedmale and Liscum, 2007; Sullivan et al., 2009).The nature of phototropin-controlled responses is diverse. On the one hand, chloroplast movements and stomatal opening are rapid, cell-autonomous, and reversible processes. On the other hand, phototropic responses and leaf flattening are slower symmetric growth processes coordinated by cell expansion and division. Such growth coordination is under tight hormonal regulation, and the hormone auxin is a central regulator of phototropism (Holland et al., 2009), leaf flattening (Keller and Van Volkenburgh, 1997; Li et al., 2007; Bainbridge et al., 2008; Braun et al., 2008), and leaf positioning (Tao et al., 2008; Millenaar et al., 2009). An important task is to identify points of convergence between phototropin signaling and auxin signaling. Hypocotyl phototropism is triggered by blue light-induced auxin redistribution and signaling across the organ (Esmon et al., 2006; Holland et al., 2009). Recent reports suggest that the phototropins achieve this by directly regulating the activity of auxin transporters. First, the three main classes of auxin transporters (AUXIN RESISTANT1 [AUX1]/LIKE AUX1, PIN-FORMED [PIN], and P-glycoproteins [PGP]) are involved in the regulation of phototropism (Friml et al., 2002; Noh et al., 2003; Blakeslee et al., 2004; Nagashima et al., 2008; Stone et al., 2008). Second, phot1 is required for the relocalization of PIN1 upon blue light exposure (Blakeslee et al., 2004). Third, the phototropin-related AGC kinase PINOID (PID) is a crucial regulator of PIN1 intracellular cycling, which suggests an important role for AGC kinases in the regulation of auxin transport polarity (Michniewicz et al., 2007; Robert and Offringa, 2008). The link between the phototropins and auxin has not been firmly established in the cases of leaf flattening and leaf positioning.NPH3 is a strong candidate to provide a link between phototropins and auxin transport. First, NPH3 acts specifically in phototropin-controlled processes that involve growth regulation. Second, the rice (Oryza sativa) homolog of NPH3 called COLEOPTILE PHOTOTROPISM1 (CPT1) is an essential mediator of auxin redistribution in coleoptiles during the phototropin response (Haga et al., 2005). Third, an Arabidopsis homolog of NPH3 named MACCHIBOU4/ENHANCER OF PINOID/NAKED PINS IN YUC MUTANTS1 (MAB4/ENP/NPY1) is involved in organogenesis synergistically with PID by controlling PIN1 localization in embryo and inflorescence stems (Cheng et al., 2007; Furutani et al., 2007). However, beyond these correlative observations, the mechanisms of auxin transport regulation by phototropin signaling remain poorly understood (Holland et al., 2009).PHYTOCHROME KINASE SUBSTRATE (PKS) proteins were initially identified as phytochrome signaling components that regulate developmental processes such as deetiolation and growth orientation of roots and hypocotyls (Fankhauser et al., 1999; Lariguet et al., 2003; Khanna et al., 2006; Boccalandro et al., 2008; Molas and Kiss, 2008; Schepens et al., 2008). PKS1, PKS2, and PKS4 interact with phytochrome A and PKS1 is phosphorylated by phytochrome A in vitro (Fankhauser et al., 1999; Lariguet et al., 2003; Schepens et al., 2008). Recently, we have shown that PKS1 also interacts with phot1 and NPH3 in vivo and is required for phot1-mediated root and hypocotyl phototropism (Lariguet et al., 2006; Boccalandro et al., 2008). The importance of PKS proteins for phototropism prompted us to test their involvement in phototropin-mediated responses more globally. Here, we show that PKS2 acts in phot1 and phot2 signaling pathways controlling leaf positioning and leaf flattening but not chloroplast movements and stomatal opening. Interestingly, PKS2 and NPH3 selectively control phototropin-mediated growth responses and interact genetically. Several lines of evidence, including auxin transport assays in mesophyll protoplasts, suggest that PKS2 may regulate these developmental light responses by modulating auxin homeostasis.  相似文献   
45.

Background  

The processes by which eggs develop in the insect ovary are well characterized. Despite a large number of Drosophila mutants that cannot lay eggs, the way that the egg is moved along the reproductive tract from ovary to uterus is less well understood. We remedy this with an integrative study on the reproductive tract muscles (anatomy, innervation, contractions, aminergic modulation) in female flies.  相似文献   
46.
Six novel members of the IL-1 family of cytokines were recently identified, primarily through the use of DNA database searches for IL-1 homologues, and were named IL-1F5 to IL-1F10. In the present study, we investigated the effect of IL-1F8 on primary human joint cells, and examined the expression of the new IL-1 family members in human and mouse joints. Human synovial fibroblasts (hSFs) and human articular chondrocytes (hACs) expressed the IL-1F8 receptor (IL-1Rrp2) and produced pro-inflammatory mediators in response to recombinant IL-1F8. IL-1F8 mRNA expression was increased in hSFs upon stimulation with proinflammatory cytokines, whereas in hACs IL-1F8 mRNA expression was constitutive. However, IL-1F8 protein was undetectable in hSF and hAC culture supernatants. Furthermore, although IL-1beta protein levels were increased in inflamed human and mouse joint tissue, IL-1F8 protein levels were not. IL-1F8 levels in synovial fluids were similar to or lower than those in matched serum samples, suggesting that the joint itself is not a major source of IL-1F8. Serum levels of IL-1F8 were similar in healthy donors, and patients with rheumatoid arthritis, osteoarthritis and septic shock, and did not correlate with inflammatory status. Interestingly however, we observed high IL-1F8 levels in several serum samples in all groups. In conclusion, IL-1F8 exerts proinflammatory effects in primary human joint cells. Joint and serum IL-1F8 protein levels did not correlate with inflammation, but they were high in some human serum samples tested, including samples from patients with rheumatoid arthritis. It remains to be determined whether circulating IL-1F8 can contribute to joint inflammation in rheumatoid arthritis.  相似文献   
47.
The present study investigates the time-varying control of pituitary hormone secretion over the day and night (D/N). To this end, we implemented an analytical platform designed to reconstruct simultaneously 1) basal (nonpulsatile) secretion, 2) single or dual secretory-burst waveforms, 3) random effects on burst amplitude, 4) stochastic pulse-renewal properties, 5) biexponential elimination kinetics, and 6) experimental uncertainty. The statistical solution is conditioned on a priori pulse-onset times, which are estimated in the first stage. Primary data composed of thyrotropin (TSH) concentrations were monitored over 24 h in 27 healthy adults. According to statistical criteria, 21/27 profiles favored a dual compared with single secretory-burst waveform. An objectively defined waveform change point (D/N boundary) emerged at 2046 (+/-23 min), after which 1) the mass of TSH released per burst increases by 2.1-fold (P < 0.001), 2) TSH secretory-burst frequency rises by 1.2-fold (P < 0.001), 3) the latency to maximal TSH secretion within a burst decreases by 67% (P < 0.001), 4) variability in secretory-burst shape diminishes by 50% (P < 0.001), and 5) basal TSH secretion declines by 17% (P < 0.002). In contrast, the regularity of successive burst times and the slow-phase half-life are stable. In conclusion, nycthemeral mechanisms govern TSH secretory-burst mass, frequency, waveform, and variability but not evidently TSH elimination kinetics or the pulse-timing process. Further studies will be required to assess the generality of the foregoing distinctive control mechanisms in other hypothalamo-pituitary axes.  相似文献   
48.
Using the strictly neutral model as a null hypothesis, we tested for deviations from expected levels of nucleotide polymorphism at the alcohol dehydrogenase locus (Adh-1) within and among four species of pocket gophers (Geomys bursarius major, G. knoxjonesi, G. texensis llanensis, and G. attwateri). The complete protein-encoding region was examined, and 10 unique alleles, representing both electromorphic and cryptic alleles, were used to test hypotheses (e.g., the neutral model) concerning the maintenance of genetic variation. Nineteen variable sites were identified among the 10 alleles examined, including 9 segregating sites occurring in synonymous positions and 10 that were nonsynonymous. Several statistical methods, including those that test for within-species variation as well as those that examine variation within and among species, failed to reject the null hypothesis that variation (both within and between species of Geomys) at the Adh locus is consistent with the neutral theory. However, there was significant heterogeneity in the ratio of polymorphism to divergence across the gene, with polymorphisms clustered in the first half of the coding region and fixed differences clustered in the second half of the gene. Two alternative hypotheses are discussed as possible explanations for this heterogeneity: an old balanced polymorphism in the first half of the gene or a recent selective sweep in the second half of the gene.   相似文献   
49.
Macrophage pseudopodia that surround objects during phagocytosis contain a meshwork of actin filaments and exclude organelles. Between these pseudopodia at the base of developing phagosomes, the organelle exclusion ceases, and lysosomes enter the cell periphery to fuse with the phagosomes. Macrophages also extend hyaline pseudopodia on the surface of nylon wool fibers and secrete lysosomal enzymes into the extracellular medium instead of into phagosomes. To analyze biochemically these concurrent alterations in cytoplasmic architecture, we allowed rabbit lung macrophages to spread on nylon wool fibers and then subjected the adherent cells to shear. This procedure caused the selective release of β-glucoronidase into the extracellular medium and yielded two fractions, cell bodies and isolated pseudopod blebs resembling podosomes, which are plasma-lemma-bounded sacs of cortical cytoplasm. Cytoplasmic extracts of the cell bodies eluted from nylon fibers contained two-thirds less actin-binding protein and myosin, and approximately 20 percent less actin and two-thirds of the other two proteins were accounted for in podosomes. The alterations in protein composition correlated with assays of myosin-associated EDTA-activated adenosine triphosphatase activity, and with a diminution in the capacity of extracts of nylon wool fiber-treated cell bodies to gel, a property dependent on the interaction between actin-binding protein and F-actin. However, the capacity of the remaining actin in cell bodies to polymerize did not change. We propose that actin-binding protein and myosin are concentrated in the cell cortex and particularly in pseudopodia where prominent gelation and syneresis of actin occur. Actin in the regions from which actin-binding protein and myosin are displaced disaggregates without depolymerizing, permitting lysosomes to gain access to the plasmalemma. Translocation of contractile proteins could therefore account for the concomitant differences in organelle exclusion that characterize phagocytosis.  相似文献   
50.
Several studies suggest that the hypothalamo-pituitary-adrenal (HPA) axis is exceedingly active in obese individuals. Experimental studies show that circulating free fatty acids (FFAs) promote the secretory activity of the HPA axis and that human obesity is associated with high circulating FFAs. We hypothesized that HPA axis activity is enhanced and that lowering of circulating FFAs by acipimox would reduce spontaneous secretion of the HPA hormonal ensemble in obese humans. To evaluate these hypotheses, diurnal ACTH and cortisol secretion was studied in 11 obese and 9 lean premenopausal women (body mass index: obese 33.5 +/- 0.9 vs. lean 21.2 +/- 0.6 kg/m(2), P < 0.001) in the early follicular stage of their menstrual cycle. Obese women were randomly assigned to treatment with either acipimox (inhibitor of lipolysis, 250 mg orally four times daily) or placebo in a double-blind crossover design, starting one day before admission until the end of the blood-sampling period. Blood samples were taken during 24 h with a sampling interval of 10 min for assessment of plasma ACTH and cortisol concentrations. ACTH and cortisol secretion rates were estimated by multiparameter deconvolution analysis. Daily ACTH secretion was substantially higher in obese than in lean women (7,950 +/- 1,212 vs. 2,808 +/- 329 ng/24 h, P = 0.002), whereas cortisol was not altered (obese 36,362 +/- 5,639 vs. lean 37,187 +/- 4,239 nmol/24 h, P = 0.912). Acipimox significantly reduced ACTH secretion in the obese subjects (acipimox 5,850 +/- 769 ng/24 h, P = 0.039 vs. placebo), whereas cortisol release did not change (acipimox 33,542 +/- 3,436 nmol/24 h, P = 0.484 vs. placebo). In conclusion, spontaneous ACTH secretion is enhanced in obese premenopausal women, whereas cortisol production is normal. Reduction of circulating FFA concentrations by acipimox blunts ACTH release in obese women, which suggests that FFAs are involved in the pathophysiology of this neuroendocrine anomaly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号