首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   633篇
  免费   64篇
  697篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   8篇
  2020年   7篇
  2019年   10篇
  2018年   14篇
  2017年   17篇
  2016年   16篇
  2015年   29篇
  2014年   31篇
  2013年   39篇
  2012年   60篇
  2011年   53篇
  2010年   29篇
  2009年   34篇
  2008年   38篇
  2007年   42篇
  2006年   43篇
  2005年   25篇
  2004年   26篇
  2003年   19篇
  2002年   32篇
  2001年   7篇
  2000年   7篇
  1999年   7篇
  1998年   10篇
  1997年   5篇
  1996年   12篇
  1995年   4篇
  1994年   4篇
  1993年   6篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   8篇
  1988年   4篇
  1987年   7篇
  1986年   4篇
  1985年   11篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
排序方式: 共有697条查询结果,搜索用时 15 毫秒
81.
The specificity of thrombin for procoagulant and anticoagulant substrates is regulated allosterically by Na+. Ordered cleavage of prothrombin (ProT) at Arg320 by the prothrombinase complex generates proteolytically active, meizothrombin (MzT), followed by cleavage at Arg271 to produce thrombin and fragment 1.2. The alternative pathway of initial cleavage at Arg271 produces the inactive zymogen form, the prethrombin 2 (Pre 2).fragment 1.2 complex, which is cleaved subsequently at Arg320. Cleavage at Arg320 of ProT or prethrombin 1 (Pre 1) activates the catalytic site and the precursor form of exosite I (proexosite I). To determine the pathway of expression of Na+-(pro)exosite I linkage during ProT activation, the effects of Na+ on the affinity of fluorescein-labeled hirudin-(54-65) ([5F]Hir-(54-65)(SO-3)) for the zymogens, ProT, Pre 1, and Pre 2, and for the proteinases, MzT and MzT-desfragment 1 (MzT(-F1)) were quantitated. The zymogens showed no significant linkage between proexosite I and Na+, whereas cleavage at Arg320 caused the affinities of MzT and MzT(-F1) for [5F]Hir-(54-65)(SO-3) to be enhanced by Na+ 8- to 10-fold and 5- to 6-fold, respectively. MzT and MzT(-F1) showed kinetically different mechanisms of Na+ enhancement of chromogenic substrate hydrolysis. The results demonstrate for the first time that MzT is regulated allosterically by Na+. The results suggest that the distinctive procoagulant substrate specificity of MzT, in activating factor V and factor VIII on membranes, and the anticoagulant, membrane-modulated activation of protein C by MzT bound to thrombomodulin are regulated by Na+-induced allosteric transition. Further, the Na+ enhancement in MzT activity and exosite I affinity may function in directing the sequential ProT activation pathway by accelerating thrombin formation from the MzT fast form.  相似文献   
82.
Advanced personalized dosimetry for molecular nuclear therapy has been shown to be feasible in clinical practice. At the same time instrumentation and dosimetric software are still evolving at a high pace. Procedures developed so far differ in approach and sophistication, and standard operating procedures necessary for accurate patient specific dosimetry do not yet exist. For this reason we restricted ourselves to reviewing the literature and highlighting relevant developments.  相似文献   
83.

Liquid Chromatography Mass Spectrometry (LC-MS) is a powerful and widely applied method for the study of biological systems, biomarker discovery and pharmacological interventions. LC-MS measurements are, however, significantly complicated by several technical challenges, including: (1) ionisation suppression/enhancement, disturbing the correct quantification of analytes, and (2) the detection of large amounts of separate derivative ions, increasing the complexity of the spectra, but not their information content. Here we introduce an experimental and analytical strategy that leads to robust metabolome profiles in the face of these challenges. Our method is based on rigorous filtering of the measured signals based on a series of sample dilutions. Such data sets have the additional characteristic that they allow a more robust assessment of detection signal quality for each metabolite. Using our method, almost 80% of the recorded signals can be discarded as uninformative, while important information is retained. As a consequence, we obtain a broader understanding of the information content of our analyses and a better assessment of the metabolites detected in the analyzed data sets. We illustrate the applicability of this method using standard mixtures, as well as cell extracts from bacterial samples. It is evident that this method can be applied in many types of LC-MS analyses and more specifically in untargeted metabolomics.

  相似文献   
84.
Granzyme-mediated cell death is the major pathway for cytotoxic lymphocytes to kill virus-infected and tumor cells. In humans, five different granzymes (i.e. GrA, GrB, GrH, GrK, and GrM) are known that all induce cell death. Expression of intracellular serine protease inhibitors (serpins) is one of the mechanisms by which tumor cells evade cytotoxic lymphocyte-mediated killing. Intracellular expression of SERPINB9 by tumor cells renders them resistant to GrB-induced apoptosis. In contrast to GrB, however, no physiological intracellular inhibitors are known for the other four human granzymes. In the present study, we show that SERPINB4 formed a typical serpin-protease SDS-stable complex with both recombinant and native human GrM. Mutation of the P2-P1-P1' triplet in the SERPINB4 reactive center loop completely abolished complex formation with GrM and N-terminal sequencing revealed that GrM cleaves SERPINB4 after P1-Leu. SERPINB4 inhibited GrM activity with a stoichiometry of inhibition of 1.6 and an apparent second order rate constant of 1.3×10(4) M(-1) s(-1). SERPINB4 abolished cleavage of the macromolecular GrM substrates α-tubulin and nucleophosmin. Overexpression of SERPINB4 in tumor cells inhibited recombinant GrM-induced as well as NK cell-mediated cell death and this inhibition depended on the reactive center loop of the serpin. As SERPINB4 is highly expressed by squamous cell carcinomas, our results may represent a novel mechanism by which these tumor cells evade cytotoxic lymphocyte-induced GrM-mediated cell death.  相似文献   
85.
Single molecule studies on membrane proteins embedded in their native environment are hampered by the intrinsic difficulty of immobilizing elastic and sensitive biological membranes without interfering with protein activity. Here, we present hydrogels composed of nano-scaled fibers as a generally applicable tool to immobilize biological membrane vesicles of various size and lipid composition. Importantly, membrane proteins immobilized in the hydrogel as well as soluble proteins are fully active. The triggered opening of the mechanosensitive channel of large conductance (MscL) reconstituted in giant unilamellar vesicles (GUVs) was followed in time on single GUVs. Thus, kinetic studies of vectorial transport processes across biological membranes can be assessed on single, hydrogel immobilized, GUVs. Furthermore, protein translocation activity by the membrane embedded protein conducting channel of bacteria, SecYEG, in association with the soluble motor protein SecA was quantitatively assessed in bulk and at the single vesicle level in the hydrogel. This technique provides a new way to investigate membrane proteins in their native environment at the single molecule level by means of fluorescence microscopy.  相似文献   
86.
87.
88.
In this paper we present and discuss a novel, simple and easy to implement parametric modeling approach to assess synergy. An extended three parameter log-logistic model is used to analyse the data and calculate confidence intervals of the interaction indices. In addition the model corrects for the bias due to plate-location effects. The analysis is performed with PROC NLMIXED and SAS-code is provided. The approach is illustrated using data coming from an oncology study in which the inhibition effect of a combination of two compounds is studied using 96-well plates and a fixed-ratio design.  相似文献   
89.
Nucleotide excision repair (NER) requires the concerted action of many different proteins that assemble at sites of damaged DNA in a sequential fashion. We have constructed a mathematical model delineating hallmarks and general characteristics for NER. We measured the assembly kinetics of the putative damage-recognition factor XPC-HR23B at sites of DNA damage in the nuclei of living cells. These and other in vivo kinetic data allowed us to scrutinize the dynamic behavior of the nucleotide excision repair process in detail. A sequential assembly mechanism appears remarkably advantageous in terms of repair efficiency. Alternative mechanisms for repairosome formation, including random assembly and preassembly, can readily become kinetically unfavorable. Based on the model, new experiments can be defined to gain further insight into this complex process and to critically test model predictions. Our work provides a kinetic framework for NER and rationalizes why many multiprotein processes within the cell nucleus show sequential assembly strategy.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号