首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   624篇
  免费   63篇
  2023年   1篇
  2022年   4篇
  2021年   8篇
  2020年   8篇
  2019年   10篇
  2018年   12篇
  2017年   16篇
  2016年   17篇
  2015年   32篇
  2014年   35篇
  2013年   39篇
  2012年   62篇
  2011年   47篇
  2010年   30篇
  2009年   33篇
  2008年   38篇
  2007年   40篇
  2006年   41篇
  2005年   25篇
  2004年   23篇
  2003年   19篇
  2002年   32篇
  2001年   5篇
  2000年   7篇
  1999年   6篇
  1998年   15篇
  1997年   5篇
  1996年   14篇
  1995年   4篇
  1994年   3篇
  1993年   7篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   8篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   8篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1970年   1篇
排序方式: 共有687条查询结果,搜索用时 15 毫秒
91.
ABSTRACT: BACKGROUND: Chromosome 17q21.31 contains a common inversion polymorphism of approximately 900 kb in populations with European ancestry. Two divergent MAPT haplotypes, H1 and H2 are described with distinct linkage disequilibrium patterns across the region reflecting the inversion status at this locus. The MAPT H1 haplotype has been associated with progressive supranuclear palsy, corticobasal degeneration, Parkinson's disease and Alzheimer's disease, while the H2 is linked to recurrent deletion events associated with the 17q21.31 microdeletion syndrome, a disease characterized by developmental delay and learning disability. RESULTS: In this study, we investigate the effect of the inversion on the expression of genes in the 17q21.31 region. We find the expression of several genes in and at the borders of the inversion to be affected; specific either to whole blood or different regions of the human brain. The H1 haplotype was found to be associated with an increased expression of LRRC37A4, PLEKH1M and MAPT. In contrast, a decreased expression of MGC57346, LRRC37A and CRHR1 was associated with H1. CONCLUSIONS: Studies thus far have focused on the expression of MAPT in the inversion region. However, our results show that the inversion status affects expression of other genes in the 17q21.31 region as well. Given the link between the inversion status and different neurological diseases, these genes may also be involved in disease pathology, possibly in a tissue-specific manner.  相似文献   
92.
Ribonucleotide reductase (RNR) is the enzyme critically responsible for the production of the 5'-deoxynucleoside-triphosphates (dNTPs), the direct precursors for DNA synthesis. The dNTP levels are tightly controlled to permit high efficiency and fidelity of DNA synthesis. Much of this control occurs at the level of the RNR by feedback processes, but a detailed understanding of these mechanisms is still lacking. Using a genetic approach in the bacterium Escherichia coli, a paradigm for the class Ia RNRs, we isolated 23 novel RNR mutants displaying elevated mutation rates along with altered dNTP levels. The responsible amino-acid substitutions in RNR reside in three different regions: (i) the (d)ATP-binding activity domain, (ii) a novel region in the small subunit adjacent to the activity domain, and (iii) the dNTP-binding specificity site, several of which are associated with different dNTP pool alterations and different mutational outcomes. These mutants provide new insight into the precise mechanisms by which RNR is regulated and how dNTP pool disturbances resulting from defects in RNR can lead to increased mutation.  相似文献   
93.
Liquid Chromatography Mass Spectrometry (LC-MS) is a powerful and widely applied method for the study of biological systems, biomarker discovery and pharmacological interventions. LC-MS measurements are, however, significantly complicated by several technical challenges, including: (1) ionisation suppression/enhancement, disturbing the correct quantification of analytes, and (2) the detection of large amounts of separate derivative ions, increasing the complexity of the spectra, but not their information content. Here we introduce an experimental and analytical strategy that leads to robust metabolome profiles in the face of these challenges. Our method is based on rigorous filtering of the measured signals based on a series of sample dilutions. Such data sets have the additional characteristic that they allow a more robust assessment of detection signal quality for each metabolite. Using our method, almost 80% of the recorded signals can be discarded as uninformative, while important information is retained. As a consequence, we obtain a broader understanding of the information content of our analyses and a better assessment of the metabolites detected in the analyzed data sets. We illustrate the applicability of this method using standard mixtures, as well as cell extracts from bacterial samples. It is evident that this method can be applied in many types of LC-MS analyses and more specifically in untargeted metabolomics.  相似文献   
94.
Serine protease granzyme M (GrM) is highly expressed in the cytolytic granules of NK cells, which eliminate virus-infected cells and tumor cells. The molecular mechanisms by which GrM induces cell death, however, remain poorly understood. In this study we used a proteomic approach to scan the native proteome of human tumor cells for intracellular substrates of GrM. Among other findings, this approach revealed several components of the cytoskeleton. GrM directly and efficiently cleaved the actin-plasma membrane linker ezrin and the microtubule component alpha-tubulin by using purified proteins, tumor cell lysates, and tumor cells undergoing cell death induced by perforin and GrM. These cleavage events occurred independently of caspases or other cysteine proteases. Kinetically, alpha-tubulin was more efficiently cleaved by GrM as compared with ezrin. Direct alpha-tubulin proteolysis by GrM is complex and occurs at multiple cleavage sites, one of them being Leu at position 269. GrM disturbed tubulin polymerization dynamics in vitro and induced microtubule network disorganization in tumor cells in vivo. We conclude that GrM targets major components of the cytoskeleton that likely contribute to NK cell-induced cell death.  相似文献   
95.
The inflammatory response following particle inhalation is described as a key event in the development of lung diseases, e.g., fibrosis and cancer. The essential role of alveolar macrophages (AM) in the pathogenicity of particles through their functions in lung clearance and mediation of inflammation is well known. However, the molecular mechanisms and direct consequences of particle uptake are still unclear. Inhibition of different classic phagocytosis receptors by flow cytometry shows a reduction of the dose-dependent quartz particle (DQ12) uptake in the rat AM cell line NR8383. Thereby the strongest inhibitory effect was observed by blocking the FcgammaII-receptor (FcgammaII-R). Fluorescence immunocytochemistry, demonstrating FcgammaII-R clustering at particle binding sites as well as transmission electron microscopy, visualizing zippering mechanism-like morphological changes, confirmed the role of the FcgammaII-R in DQ12 phagocytosis. FcgammaII-R participation in DQ12 uptake was further strengthened by the quartz-induced activation of the Src-kinase Lyn, the phospho-tyrosine kinases Syk (spleen tyrosine kinase) and PI3K (phosphatidylinositol 3-kinase), as shown by Western blotting. Activation of the small GTPases Rac1 and Cdc42, shown by immunoprecipitation, as well as inhibition of tyrosine kinases, GTPases, or Rac1 provided further support for the role of the FcgammaII-R. Consistent with the uptake results, FcgammaII-R activation with its specific ligand caused a similar generation of reactive oxygen species and TNF-alpha release as observed after treatment with DQ12. In conclusion, our results indicate a major role of FcgammaII-R and its downstream signaling cascade in the phagocytosis of quartz particles in AM as well as in the associated generation and release of inflammatory mediators.  相似文献   
96.
Carbon transfer between plants via a common extraradical network of arbuscular mycorrhizal (AM) fungal hyphae has been investigated abundantly, but the results remain equivocal. We studied the transfer of carbon through this fungal network, from a Medicago truncatula donor plant to a receiver (1) M. truncatula plant growing under decreased light conditions and (2) M. truncatula seedling. Autotrophic plants were grown in bicompartmented Petri plates, with their root systems physically separated, but linked by the extraradical network of Glomus intraradices. A control Myc-/Nod- M. truncatula plant was inserted in the same compartment as the receiver plant. Following labeling of the donor plant with 13CO2, 13C was recovered in the donor plant shoots and roots, in the extraradical mycelium and in the receiver plant roots. Fatty acid analysis of the receiver's roots further demonstrated 13C enrichment in the fungal-specific lipids, while almost no label was detected in the plant-specific compounds. We conclude that carbon was transferred from the donor to the receiver plant via the AM fungal network, but that the transferred carbon remained within the intraradical AM fungal structures of the receiver's root and was not transferred to the receiver's plant tissues.  相似文献   
97.
A fundamental question in developmental biology is how does an undifferentiated field of cells acquire spatial pattern and undergo coordinated differentiation? The development of the vertebrate limb is an important paradigm for understanding these processes. The skeletal and connective tissues of the developing limb all derive from a population of multipotent progenitor cells located in its distal tip. During limb outgrowth, these progenitors segregate into a chondrogenic lineage, located in the center of the limb bud, and soft connective tissue lineages located in its periphery. We report that the interplay of two families of signaling proteins, fibroblast growth factors (FGFs) and Wnts, coordinate the growth of the multipotent progenitor cells with their simultaneous segregation into these lineages. FGF and Wnt signals act together to synergistically promote proliferation while maintaining the cells in an undifferentiated, multipotent state, but act separately to determine cell lineage specification. Withdrawal of both signals results in cell cycle withdrawal and chondrogenic differentiation. Continued exposure to Wnt, however, maintains proliferation and re-specifies the cells towards the soft connective tissue lineages. We have identified target genes that are synergistically regulated by Wnts and FGFs, and show how these factors actively suppress differentiation and promote growth. Finally, we show how the spatial restriction of Wnt and FGF signals to the limb ectoderm, and to a specialized region of it, the apical ectodermal ridge, controls the distribution of cell behaviors within the growing limb, and guides the proper spatial organization of the differentiating tissues.  相似文献   
98.
We have shown previously that lack of molybdenum cofactor (MoCo) in Escherichia coli leads to hypersensitivity to the mutagenic and toxic effects of N -hydroxylated base analogues, such as 6- N -hydroxylaminopurine (HAP). However, the nature of the MoCo-dependent mechanism is unknown, as inactivation of all known and putative E. coli molybdoenzymes does not produce any sensitivity. Presently, we report on the isolation and characterization of two novel HAP-hypersensitive mutants carrying defects in the ycbX or yiiM open reading frames. Genetic analysis suggests that the two genes operate within the MoCo-dependent pathway. In the absence of the ycbX - and yiiM -dependent pathways, biotin sulfoxide reductase plays also a role in the detoxification pathway. YcbX and YiiM are hypothetical members of the MOSC protein superfamily, which contain the C-terminal domain (MOSC) of the eukaryotic MoCo sulphurases. However, deletion of ycbX or yiiM did not affect the activity of human xanthine dehydrogenase expressed in E. coli , suggesting that the role of YcbX and YiiM proteins is not related to MoCo sulphuration. Instead, YcbX and YiiM may represent novel MoCo-dependent enzymatic activities. We also demonstrate that the MoCo/YcbX/YiiM-dependent detoxification of HAP proceeds by reduction to adenine.  相似文献   
99.
Enhancing perinatal nitric oxide (NO) availability persistently reduces blood pressure in spontaneously hypertensive rats. We hypothesize that this approach can be generalized to other models of genetic hypertension, for instance those associated with renal injury. Perinatal exposure to the NO donor molsidomine was studied in fawn-hooded hypertensive (FHH) rats, a model of mild hypertension, impaired preglomerular resistance, and progressive renal injury. Perinatal molsidomine increased urinary NO metabolite excretion at 8 wk of age, i.e., 4 wk after treatment was stopped (P < 0.05). Systolic blood pressure was persistently reduced after molsidomine (42-wk females: 118 +/- 3 vs. 141 +/- 5 and 36-wk males: 139 +/- 4 vs. 158 +/- 4 mmHg; both P < 0.001). Perinatal treatment decreased glomerular filtration rate (P < 0.05) and renal blood flow (P < 0.01) and increased renal vascular resistance (P < 0.05), without affecting filtration fraction, suggesting persistently increased preglomerular resistance. At 4 wk of age natriuresis was transiently increased by molsidomine (P < 0.05). Molsidomine decreased glomerulosclerosis (P < 0.05). Renal blood flow correlated positively with glomerulosclerosis in control (P < 0.001) but not in perinatally treated FHH rats. NO dependency of renal vascular resistance was increased by perinatal molsidomine. Perinatal enhancement of NO availability can ameliorate development of hypertension and renal injury in FHH rats. Paradoxically, glomerular protection by perinatal exposure to the NO donor molsidomine may be due to persistently increased preglomerular resistance. The mechanisms by which increased perinatal NO availability can persistently reprogram kidney function and ameliorate hypertension deserve further study.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号