首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   5篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2006年   3篇
  2005年   1篇
  1998年   3篇
  1997年   1篇
  1979年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有33条查询结果,搜索用时 31 毫秒
21.
22.

Background

The mesencephalic dopaminergic (mDA) cell system is composed of two major groups of projecting cells in the Substantia Nigra (SN) (A9 neurons) and the Ventral Tegmental Area (VTA) (A10 cells). Selective degeneration of A9 neurons occurs in Parkinson’s disease (PD) while abnormal function of A10 cells has been linked to schizophrenia, attention deficit and addiction. The molecular basis that underlies selective vulnerability of A9 and A10 neurons is presently unknown.

Results

By taking advantage of transgenic labeling, laser capture microdissection coupled to nano Cap-Analysis of Gene Expression (nanoCAGE) technology on isolated A9 and A10 cells, we found that a subset of Olfactory Receptors (OR)s is expressed in mDA neurons. Gene expression analysis was integrated with the FANTOM5 Helicos CAGE sequencing datasets, showing the presence of these ORs in selected tissues and brain areas outside of the olfactory epithelium. OR expression in the mesencephalon was validated by RT-PCR and in situ hybridization. By screening 16 potential ligands on 5 mDA ORs recombinantly expressed in an heterologous in vitro system, we identified carvone enantiomers as agonists at Olfr287 and able to evoke an intracellular Ca2+ increase in solitary mDA neurons. ORs were found expressed in human SN and down-regulated in PD post mortem brains.

Conclusions

Our study indicates that mDA neurons express ORs and respond to odor-like molecules providing new opportunities for pharmacological intervention in disease.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-729) contains supplementary material, which is available to authorized users.  相似文献   
23.

Background  

The mechanism of action of levonorgestrel (LNG) as emergency contraception (EC) remains a subject of debate and its effect on sperm function has been only partially explained. The aim of this study was to assess whether LNG at a similar dose to those found in serum following oral intake for EC could affect spermatozoa when exposed to human fallopian tubes in vitro.  相似文献   
24.

Background

MicroRNAs are modifiers of gene expression, acting to reduce translation through either translational repression or mRNA cleavage. Recently, it has been shown that some microRNAs can act to promote or suppress cell transformation, with miR-17-92 described as the first oncogenic microRNA. The association of miR-17-92 encoded microRNAs with a surprisingly broad range of cancers not only underlines the clinical significance of this locus, but also suggests that miR-17-92 may regulate fundamental biological processes, and for these reasons miR-17-92 has been considered as a therapeutic target.

Results

In this study, we show that miR-17-92 is a cell cycle regulated locus, and ectopic expression of a single microRNA (miR-17-5p) is sufficient to drive a proliferative signal in HEK293T cells. For the first time, we reveal the mechanism behind this response - miR-17-5p acts specifically at the G1/S-phase cell cycle boundary, by targeting more than 20 genes involved in the transition between these phases. While both pro- and anti-proliferative genes are targeted by miR-17-5p, pro-proliferative mRNAs are specifically up-regulated by secondary and/or tertiary effects in HEK293T cells.

Conclusion

The miR-17-5p microRNA is able to act as both an oncogene and a tumor suppressor in different cellular contexts; our model of competing positive and negative signals can explain both of these activities. The coordinated suppression of proliferation-inhibitors allows miR-17-5p to efficiently de-couple negative regulators of the MAPK (mitogen activated protein kinase) signaling cascade, promoting growth in HEK293T cells. Additionally, we have demonstrated the utility of a systems biology approach as a unique and rapid approach to uncover microRNA function.  相似文献   
25.
The effect of nerve growth factor (NGF), a substance that promotes the differentiation and maintenance of certain neurons, was studied via scanning electron microscopy utilizing the PC12 clonal NGF-responsive pheochromocytoma cell line. After 2-4 d of exposure to NGF, these cells acquire many of the properties of normal sympathic neurons. However, by phase microscopy, no changes are discernible within the first 12-18 h. Since the primary NGF receptor appears to be a membrane receptor, it seemed likely that some of the initial responses to the factor may be surface related. PC12 cells maintained without NGF are round to ovoid and have numerous microvilli and small blebs. After the addition of NGF, there is a rapidly initiated sequential change in the cell surface. Ruffles appear over the dorsal surface of the cells with 1 min, become prominent by 3 min, and almost disappear by 7 min. Microvilli, conversely, disappear as the dorsal ruffles become prominent. Ruffles are seen at the the periphery of cell at 3 min, are prominent on most of the cells by 7 min and are gone by 15 min. The surface remains smooth from 15 min until 45 min when large blebs appear. The large blebs are present on most cells at 2 h and are gone by 4 h. The surface remains relatively smooth until 6-7 h of NGF treatment, when microvilli reappear as small knobs. These microvilli increase in both number and length to cover the cell surface by 10 h. These changes were not observed with other basic proteins, with α-bungarotoxin (which binds specifically to PC12 membranes), and were not affected by an RNA synthesis inhibitor that blocks initiation of neurite outgrowth. Changes in the cell surface architecture appear to be among the earlist NGF responses yet detected and may represent or reflect primary events in the mechanism of the factor’s action.  相似文献   
26.
27.
28.
Ion channel mapping techniques are described and the results for two fungal organisms, Saprolegnia ferax and Neurospora crassa, are presented. In these species, two channel types have been characterized, stretch-activated channels exhibiting significant calcium permeability and spontaneous channels having significant potassium permeability. Two distinct analyses of patch clamp data, analysis of channel self-clustering and association between different channel types, and localization along the hyphae, reveal significant differences between the two organisms. S. ferax maintains a tip-high gradient of both channel types which is lost after disruption of the actin cytoskeleton. There is significant self-clustering of the channels, as well as interactions between channel types. N. crassa on the other hand does not maintain tip-high gradients, and clustered distributions are observed only for the stretch-activated channels. In terms of physiological roles, evidence is quite strong that the stretch-activated channels function as a growth sensor in S. ferax, but have an unknown function in N. crassa. In both organisms, the potassium permeable channels presumably function in potassium uptake. The differences between these two organisms may be due, in part, to differences in their normal environment: aquatic versus terrestrial. Copyright 1998 Academic Press.  相似文献   
29.
Sulphate uptake and its distribution within plants depend on the activity of different sulphate transporters (SULTR). In long‐living deciduous plants such as trees, seasonal changes of spatial patterns add another layer of complexity to the question of how the interplay of different transporters adjusts S distribution within the plant to environmental changes. Poplar is an excellent model to address this question because its S metabolism is already well characterized. In the present study, the importance of SULTRs for seasonal sulphate storage and mobilization was examined in the wood of poplar (Populus tremula × P. alba) by analysing their gene expression in relation to sulphate contents in wood and xylem sap. According to these results, possible functions of the respective SULTRs for seasonal sulphate storage and mobilization in the wood are suggested. Together, the present results complement the previously published model for seasonal sulphate circulation between leaves and bark and provide information for future mechanistic modelling of whole tree sulphate fluxes.  相似文献   
30.

Background

The genus Micronycteris is a diverse group of phyllostomid bats currently comprising 11 species, with diploid number (2n) ranging from 26 to 40 chromosomes. The karyotypic relationships within Micronycteris and between Micronycteris and other phyllostomids remain poorly understood. The karyotype of Micronycteris hirsuta is of particular interest: three different diploid numbers were reported for this species in South and Central Americas with 2n?=?26, 28 and 30 chromosomes. Although current evidence suggests some geographic differentiation among populations of M. hirsuta based on chromosomal, morphological, and nuclear and mitochondrial DNA markers, the recognition of new species or subspecies has been avoided due to the need for additional data, mainly chromosomal data.

Results

We describe two new cytotypes for Micronycteris hirsuta (MHI) (2n?=?26 and 25, NF?=?32), whose differences in diploid number are interpreted as the products of Robertsonian rearrangements. C-banding revealed a small amount of constitutive heterochromatin at the centromere and the NOR was located in the interstitial portion of the short arm of a second pair, confirmed by FISH. Telomeric probes hybridized to the centromeric regions and weakly to telomeric regions of most chromosomes. The G-banding analysis and chromosome painting with whole chromosome probes from Carollia brevicauda (CBR) and Phyllostomus hastatus (PHA) enabled the establishment of genome-wide homologies between MHI, CBR and PHA.

Conclusions

The karyotypes of Brazilian specimens of Micronycteris hirsuta described here are new to Micronycteris and reinforce that M. hirsuta does not represent a monotypic taxon. Our results corroborate the hypothesis of karyotypic megaevolution within Micronycteris, and strong evidence for this is that the entire chromosome complement of M. hirsuta was shown to be derivative with respect to species compared in this study.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号