首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   21篇
  2023年   2篇
  2022年   1篇
  2021年   7篇
  2020年   5篇
  2019年   5篇
  2018年   7篇
  2017年   4篇
  2016年   1篇
  2015年   17篇
  2014年   20篇
  2013年   18篇
  2012年   17篇
  2011年   20篇
  2010年   20篇
  2009年   17篇
  2008年   23篇
  2007年   19篇
  2006年   14篇
  2005年   12篇
  2004年   15篇
  2003年   1篇
  2002年   5篇
  2001年   2篇
  2000年   7篇
  1999年   6篇
  1998年   8篇
  1997年   1篇
  1996年   6篇
  1994年   3篇
  1993年   4篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1978年   2篇
  1977年   1篇
  1965年   1篇
排序方式: 共有303条查询结果,搜索用时 15 毫秒
21.

Background

The predictive ability of genomic estimated breeding values (GEBV) originates both from associations between high-density markers and QTL (Quantitative Trait Loci) and from pedigree information. Thus, GEBV are expected to provide more persistent accuracy over successive generations than breeding values estimated using pedigree-based methods. The objective of this study was to evaluate the accuracy of GEBV in a closed population of layer chickens and to quantify their persistence over five successive generations using marker or pedigree information.

Methods

The training data consisted of 16 traits and 777 genotyped animals from two generations of a brown-egg layer breeding line, 295 of which had individual phenotype records, while others had phenotypes on 2,738 non-genotyped relatives, or similar data accumulated over up to five generations. Validation data included phenotyped and genotyped birds from five subsequent generations (on average 306 birds/generation). Birds were genotyped for 23,356 segregating SNP. Animal models using genomic or pedigree relationship matrices and Bayesian model averaging methods were used for training analyses. Accuracy was evaluated as the correlation between EBV and phenotype in validation divided by the square root of trait heritability.

Results

Pedigree relationships in outbred populations are reduced by 50% at each meiosis, therefore accuracy is expected to decrease by the square root of 0.5 every generation, as observed for pedigree-based EBV (Estimated Breeding Values). In contrast the GEBV accuracy was more persistent, although the drop in accuracy was substantial in the first generation. Traits that were considered to be influenced by fewer QTL and to have a higher heritability maintained a higher GEBV accuracy over generations. In conclusion, GEBV capture information beyond pedigree relationships, but retraining every generation is recommended for genomic selection in closed breeding populations.  相似文献   
22.

Background

A recent epidemiological study demonstrated a reduced risk of lung cancer mortality in breast cancer patients using antiestrogens. These and other data implicate a role for estrogens in lung cancer, particularly nonsmall cell lung cancer (NSCLC). Approximately 61% of human NSCLC tumors express nuclear estrogen receptor β (ERβ); however, the role of ERβ and estrogens in NSCLC is likely to be multifactorial. Here we tested the hypothesis that proteins interacting with ERβ in human lung adenocarcinoma cells that respond proliferatively to estradiol (E2) are distinct from those in non-E2-responsive cells.

Methods

FLAG affinity purification of FLAG-ERβ-interacting proteins was used to isolate ERβ-interacting proteins in whole cell extracts from E2 proliferative H1793 and non-E2-proliferative A549 lung adenocarcinoma cell lines. Following trypsin digestion, proteins were identified using liquid chromatography electrospray ionization tandem mass spectrometry (LC-MS/MS). Proteomic data were analyzed using Ingenuity Pathway Analysis. Select results were confirmed by coimmunoprecipitation.

Results

LC-MS/MS identified 27 non-redundant ERβ-interacting proteins. ERβ-interacting proteins included hsp70, hsp60, vimentin, histones and calmodulin. Ingenuity Pathway Analysis of the ERβ-interacting proteins revealed differences in molecular and functional networks between H1793 and A549 lung adenocarcinoma cells. Coimmunoprecipitation experiments in these and other lung adenocarcinoma cells confirmed that ERβ and EGFR interact in a gender-dependent manner and in response to E2 or EGF. BRCA1 interacted with ERβ in A549 cell lines and in human lung adenocarcinoma tumors, but not normal lung tissue.

Conclusion

Our results identify specific differences in ERβ-interacting proteins in lung adenocarcinoma cells corresponding to ligand-dependent differences in estrogenic responses.
  相似文献   
23.

Background  

Designing maximally selective ligands that act on individual targets is the dominant paradigm in drug discovery. Poor selectivity can underlie toxicity and side effects in the clinic, and for this reason compound selectivity is increasingly monitored from very early on in the drug discovery process. To make sense of large amounts of profiling data, and to determine when a compound is sufficiently selective, there is a need for a proper quantitative measure of selectivity.  相似文献   
24.

Background  

Probabilistic methods have progressively supplanted the Maximum Parsimony (MP) method for inferring phylogenetic trees. One of the major reasons for this shift was that MP is much more sensitive to the Long Branch Attraction (LBA) artefact than is Maximum Likelihood (ML). However, recent work by Kolaczkowski and Thornton suggested, on the basis of simulations, that MP is less sensitive than ML to tree reconstruction artefacts generated by heterotachy, a phenomenon that corresponds to shifts in site-specific evolutionary rates over time. These results led these authors to recommend that the results of ML and MP analyses should be both reported and interpreted with the same caution. This specific conclusion revived the debate on the choice of the most accurate phylogenetic method for analysing real data in which various types of heterogeneities occur. However, variation of evolutionary rates across species was not explicitly incorporated in the original study of Kolaczkowski and Thornton, and in most of the subsequent heterotachous simulations published to date, where all terminal branch lengths were kept equal, an assumption that is biologically unrealistic.  相似文献   
25.
Human mitochondrial complex I (CI) deficiency is associated with progressive neurological disorders. To better understand the CI pathomechanism, we here studied how deletion of the CI gene NDUFS4 affects cell metabolism. To this end we compared immortalized mouse embryonic fibroblasts (MEFs) derived from wildtype (wt) and whole-body NDUFS4 knockout (KO) mice. Mitochondria from KO cells lacked the NDUFS4 protein and mitoplasts displayed virtually no CI activity, moderately reduced CII, CIII and CIV activities and normal citrate synthase and CV (F(o)F(1)-ATPase) activity. Native electrophoresis of KO cell mitochondrial fractions revealed two distinct CI subcomplexes of ~830kDa (enzymatically inactive) and ~200kDa (active). The level of fully-assembled CII-CV was not affected by NDUFS4 gene deletion. KO cells exhibited a moderately reduced maximal and routine O(2) consumption, which was fully inhibited by acute application of the CI inhibitor rotenone. The aberrant CI assembly and reduced O(2) consumption in KO cells were fully normalized by NDUFS4 gene complementation. Cellular [NAD(+)]/[NADH] ratio, lactate production and mitochondrial tetramethyl rhodamine methyl ester (TMRM) accumulation were slightly increased in KO cells. In contrast, NDUFS4 gene deletion did not detectably alter [NADP(+)]/[NADPH] ratio, cellular glucose consumption, the protein levels of hexokinases (I and II) and phosphorylated pyruvate dehydrogenase (P-PDH), total cellular adenosine triphosphate (ATP) level, free cytosolic [ATP], cell growth rate, and reactive oxygen species (ROS) levels. We conclude that the NDUFS4 subunit is of key importance in CI stabilization and that, due to the metabolic properties of the immortalized MEFs, NDUFS4 gene deletion has only modest effects at the live cell level. This article is part of a special issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   
26.

Background  

Immune response pathways have been relatively well-conserved across animal species, with similar systems in both mammals and invertebrates. Interestingly, honey bees have substantially reduced numbers of genes associated with immune function compared with solitary insect species. However, social species such as honey bees provide an excellent environment for pathogen or parasite transmission with controlled environmental conditions in the hive, high population densities, and frequent interactions. This suggests that honey bees may have developed complementary mechanisms, such as behavioral modifications, to deal with disease.  相似文献   
27.

Background  

Flying lemurs or Colugos (order Dermoptera) represent an ancient mammalian lineage that contains only two extant species. Although molecular evidence strongly supports that the orders Dermoptera, Scandentia, Lagomorpha, Rodentia and Primates form a superordinal clade called Supraprimates (or Euarchontoglires), the phylogenetic placement of Dermoptera within Supraprimates remains ambiguous.  相似文献   
28.
The total amount of cellular mitochondrial DNA (mtDNA) varies widely and seems to be related to the nature and metabolic state of tissues and cells in culture. It is not known, however, whether this variation has any significance in vivo, and to which extent it regulates energy production. To better understand the importance of the cellular mtDNA level, we studied the influence of a gradual reduction of mtDNA copy number on oxidative phosphorylation in two models: (a) a control human cell line treated with different concentrations of 2′, 3′-dideoxycytidine, a nucleoside analogue that inhibits mtDNA replication by interfering with mitochondrial DNA polymerase γ, and (b) a cell line derived from a patient presenting mtDNA depletion. The two models were used to construct biochemical and phenotypic threshold curves. Our results show that oxidative phosphorylation activities are under a tight control by the amount of mtDNA in the cell, and that the full complement of mtDNA molecules are necessary to maintain a normal energy production level.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号