首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29063篇
  免费   15778篇
  国内免费   2篇
  2023年   50篇
  2022年   157篇
  2021年   519篇
  2020年   2269篇
  2019年   3830篇
  2018年   3934篇
  2017年   4188篇
  2016年   4254篇
  2015年   4223篇
  2014年   3843篇
  2013年   4295篇
  2012年   2040篇
  2011年   1745篇
  2010年   3217篇
  2009年   1940篇
  2008年   848篇
  2007年   425篇
  2006年   424篇
  2005年   424篇
  2004年   410篇
  2003年   359篇
  2002年   323篇
  2001年   304篇
  2000年   233篇
  1999年   167篇
  1998年   44篇
  1997年   16篇
  1996年   23篇
  1995年   21篇
  1994年   25篇
  1993年   19篇
  1992年   33篇
  1991年   25篇
  1990年   11篇
  1989年   25篇
  1988年   18篇
  1987年   23篇
  1986年   19篇
  1985年   12篇
  1984年   10篇
  1983年   11篇
  1982年   8篇
  1981年   5篇
  1979年   9篇
  1978年   9篇
  1977年   5篇
  1976年   8篇
  1975年   7篇
  1972年   5篇
  1968年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
161.
162.
Protein p5 is a Bacillus subtilis phage phi 29-encoded protein required for phi 29 DNA replication in vivo. Protein p5 has single-stranded DNA binding (SSB) capacity and stimulates in vitro DNA replication severalfold when phi 29 DNA polymerase is used to replicate either the natural phi 29 DNA template or primed M13 single-stranded DNA (ssDNA). Furthermore, other SSB proteins, including Escherichia coli SSB, T4 gp32, adenovirus DNA-binding protein, and human replication factor A, can functionally substitute for protein p5. The stimulatory effect of phi 29 protein p5 is not due to an increase of the DNA replication rate. When both phi 29 DNA template and M13 competitor ssDNA are added simultaneously to the replication reaction, phi 29 DNA replication is strongly inhibited. This inhibition is fully overcome by adding protein p5, suggesting that protein p5-coated M13 ssDNA is no longer able to compete for replication factors, probably phi 29 DNA polymerase, which has a strong affinity for ssDNA. Electron microscopy demonstrates that protein p5 binds to M13 ssDNA forming saturated complexes with a smoothly contoured appearance and producing a 2-fold reduction of the DNA length. Protein p5 also binds to ssDNA in the phi 29 replicative intermediates produced in vitro, which are similar in structure to those observed in vivo. Our results strongly suggest that phi 29 protein p5 is the phi 29 SSB protein active during phi 29 DNA replication.  相似文献   
163.
164.
165.
Phage phi 29 particles produced under restrictive conditions by mutants in gene 12 have normal amounts of all of the structural proteins except the appendage protein, p12*, which is missing. These particles are not infective and do not adsorb to Bacillus subtilis cells. By in vitro complementation of 12- particles with extracts containing protein p12* or with purified protein p12*, the defective particles could bind the appendage protein and become infective and able to adsorb to bacteria. Therefore, the neck appendages of phage phi 29, formed by protein p12*, are involved in the interaction of the phage with the cell wall receptors. Protein p12*, purified in its native state, competed with wild-type phage for adsorption to bacteria. Also, protein p12* could displace adsorbed phage from bacteria. Since the displaced phage was infective, protein p12* does not seem to be modified after phage adsorption.  相似文献   
166.
We isolated phi 29 DNA replicative intermediates from extracts of phage-infected Bacillus subtilis, pulsed-labeled with [3H]thymidine, by velocity sedimentation in neutral sucrose followed by CsCl equilibrium density gradient centrifugation. During a chase, the DNA with a higher sedimentation coefficient in neutral sucrose and a lower sedimentation rate in alkaline sucrose than that of viral phi 29 DNA was converted into mature DNA. The material with a density higher than that of mature phi 29 DNA consisted of replicative intermediates, as analyzed with an electron microscope. We found two major types of molecules. One consisted of unit-length duplex DNA with one single-stranded branch at a random position. The length of the single-stranded branches was similar to that of one of the double-stranded regions. The other type of molecules was unit-length DNA with one double-stranded region and one single-stranded region extending a variable distance from one end. Partial denaturation of the latter molecules showed that replication was initiated with a similar frequency from either DNA end. These findings suggest that phi 29 DNA replication occurs by a mechanism of strand displacement and that replication starts non-simultaneously from either DNA end, as in the case of adenovirus.  相似文献   
167.
Cell lines 3T3B (mouse), 3T3B-SV40, BHK21 (hamster) and BHK21 polyoma virus (PyY) were labelled with [35S]methionine under conditions in which 500–600 cpm were incorporated per cell during a 20 h incubation period. Two-dimensional gel electrophoresis analysis of the total [35S]methionine-labelled polypeptides from 200–300 cells followed by fluorography revealed about 500 acidic (isoelectric focusing, IEF) and 150 basic polypeptides (non-equilibrium pH gradient electrophoresis, NEPHGE) whose position could be reproducibly assessed. Counting of 33 abundant acidic polypeptides present in both 3T3B and 3T3B-SV40 revealed significant changes in the relative proportion of ten of them. Seven, including the subunit of the 100 Å filaments ‘fibroblast type’ (55K) (1.1% in 3T3B; 0.6% in 3T3B-SV40), three cytoarchitectural proteins and three soluble proteins, corresponded to a decrease of 40% or more in the radioactivity of the spots in transformed cells, and only in three cases was there a significant increase in radioactivity of polypeptides in 3T3B-SV40 cells. Among the polypeptides that show less than 40% variation we have identified total actin (42K) (13% of total label in 3T3B; 10% in 3T3B-SV40), α- and β-tubulin (55K) (1.6% of total label in 3T3B; 2% in 3T3B-SV40), eleven polypeptides present in Triton skeletons, and nine soluble proteins. We have also observed 25 obvious changes in polypeptide intensities (16 acidic and 9 basic) but these were not quantitated. Only three polypeptides were found in transformed cells that were not detected in normal cells. One of these corresponded to the large T antigen and the other two to Triton-soluble proteins of a molecular weight in the range of 52–54K. Similar quantitative studies on the hamster BHK21/BHK21PyY pair confirmed at least the major observations made in 3T3B and 3T3B-SV40.  相似文献   
168.
Rat brain cortices from young animals contain large amounts of tRNA (adenine-1)methyltransferase(s). The enzyme(s) can methylate E. coli tRNA and to a lower degree yeast tRNA. Among yeast tRNA species which can be methylated we have selected tRNAAsp as a substrate for the brain enzyme. The digestions of in vitro methylated [Me-3H]-tRNAAsp with pancreatic and/or T1 ribonucleases followed by chromatographies on DEAE-cellulose, 7 M urea, suggested that the methylation of tRNAAsp occurred at a single position within the D-loop. Further digestion of the radioactive oligonucleotide recovered after DEAE-cellulose chromatography by phosphomonoesterase and snake venom phosphodiesterase enzymes followed by bidimensional thin layer chromatography enabled us to determine the location of the adenine residue which becomes methylated by the brain enzyme. This one resulted to be the adenine 14 in the D-loop of yeast tRNAAsp.  相似文献   
169.
By using a modification of the BAC spreading method for mounting the DNA for electron microscopy, partial denaturation maps of protein-free phi 29 DNA and of phi 29 DNA containing protein p3 were obtained. In phi 29 p3-DNA1 the protein does not seem to influence the melting of the ends of the molecules. The comparison of the partial denaturation map and the B. subtilis RNA polymerase binding sites indicates that five of the seven early promoters (A1, A2, A3, B2 and C2) are located in A-T rich DNA regions whereas the other two early promoters (B1 and C1) are located in less A-T rich sites.  相似文献   
170.
Chloramphenicol produces a decrease in the respiratory quotient of dormant and swollenStreptomyces antibioticus spores of about 20–25% and 18–24%, respectively, in the absence of protein synthesis as measured by [3H]leucine incorporation and by chemical methods. Rifampin and streptomycin had no inhibitory effect on respiration, thus excluding the possibility of an effect of all protein synthesis inhibitors on respiration. The inhibition of respiration by chloramphenicol was not a consequence of an increase in mortality due to toxicity, nor was it influenced by the developmental stage of the spores. It seems that chloramphenicol affects the activity of some component(s) related to the electron transport chain ofS. antibioticus spores, situated before the cytochrome oxidase level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号