首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2892篇
  免费   187篇
  3079篇
  2023年   18篇
  2022年   14篇
  2021年   51篇
  2020年   42篇
  2019年   46篇
  2018年   97篇
  2017年   73篇
  2016年   125篇
  2015年   175篇
  2014年   192篇
  2013年   244篇
  2012年   297篇
  2011年   235篇
  2010年   136篇
  2009年   115篇
  2008年   175篇
  2007年   158篇
  2006年   167篇
  2005年   133篇
  2004年   110篇
  2003年   79篇
  2002年   90篇
  2001年   35篇
  2000年   27篇
  1999年   21篇
  1998年   9篇
  1997年   11篇
  1996年   12篇
  1995年   8篇
  1994年   7篇
  1993年   8篇
  1992年   6篇
  1991年   10篇
  1990年   7篇
  1989年   6篇
  1988年   9篇
  1987年   4篇
  1986年   6篇
  1985年   5篇
  1984年   7篇
  1983年   12篇
  1981年   8篇
  1980年   8篇
  1979年   6篇
  1977年   5篇
  1975年   9篇
  1974年   10篇
  1973年   7篇
  1971年   6篇
  1969年   5篇
排序方式: 共有3079条查询结果,搜索用时 9 毫秒
981.
We have utilized deletion mutants of adeno-associated virus (AAV) to investigate which elements of the AAV genome are required in cis for high yields of the wild-type virus in a plasmid transfection assay and in addition whether these elements affect primarily AAV DNA replication or encapsidation. All tested deletions from within the Rep region demonstrated a modest, approximately threefold, decrease in viral production. Deletions within the cap region resulted in markedly less virus. Previous observations suggested that in cells in which recombinant AAV (rAAV) was produced, as in our assay with the helper plasmid pDG, there is a substantial excess of empty capsids. Co-transfections of high- and low-yielding constructs demonstrated that under conditions where Cap is abundant, the constructs with cap deletions did not package efficiently. These observation suggest that the lower yields of rAAV cannot be entirely due to lack of capsids but that elements within the cap region of the wild-type genome are important for efficient encapsidation. The production of virus by the mutants we tested was, however, not consistent with the disruption of a cis-acting packaging signal. Apparently, when Cap is provided "in trans," encapsidation is inefficient. A second observation is that there were equivalent amounts of replicated but unencapsidated viral DNA in cells transfected with each of our constructs. We propose that, in accord with the previously proposed link between DNA replication and encapsidation, the total amount of AAV DNA replication can be limited by the efficiency of encapsidation.  相似文献   
982.
Centrioles are microtubule-based cylindrical structures that exhibit 9-fold symmetry and facilitate the organization of centrosomes, flagella, and cilia [1]. Abnormalities in centrosome structure and number occur in many cancers [1, 2]. Despite its importance, very little is known about centriole biogenesis. Recent studies in C. elegans have highlighted a group of molecules necessary for centriole assembly [1, 3]. ZYG-1 kinase recruits a complex of two coiled-coil proteins, SAS-6 and SAS-5, which are necessary to form the C. elegans centriolar tube, a scaffold in centriole formation [4, 5]. This complex also recruits SAS-4, which is required for the assembly of the centriolar microtubules that decorate that tube [4, 5]. Here we show that Drosophila SAS-6 is involved in centriole assembly and cohesion. Overexpression of DSAS-6 in syncitial embryos led to the de novo formation of multiple microtubule-organizing centers (MTOCs). Strikingly, the center of these MTOCs did not contain centrioles, as described previously for SAK/PLK4 overexpression [6]. Instead, tube-like structures were present, supporting the idea that centriolar assembly starts with the formation of a tube-like scaffold, dependent on DSAS-6 [5]. In DSAS-6 loss-of-function mutants, centrioles failed to close and to elongate the structure along all axes of the 9-fold symmetry, suggesting modularity in centriole assembly. We propose that the tube is built from nine subunits fitting together laterally and longitudinally in a modular and sequential fashion, like pieces of a layered "hollow" cake.  相似文献   
983.
The production of wild-type-free stocks of recombinant parvovirus minute virus of mice [MVM(p)] is difficult due to the presence of homologous sequences in vector and helper genomes that cannot easily be eliminated from the overlapping coding sequences. We have therefore cloned and sequenced spontaneously occurring defective particles of MVM(p) with very small genomes to identify the minimal cis-acting sequences required for DNA amplification and virus production. One of them has lost all capsid-coding sequences but is still able to replicate in permissive cells when nonstructural proteins are provided in trans by a helper plasmid. Vectors derived from this particle produce stocks with no detectable wild-type MVM after cotransfection with new, matched, helper plasmids that present no homology downstream from the transgene.  相似文献   
984.
Mesenchymal stromal cells (MSC) isolated from synovial tissues constitute a novel source of stem-like cells with promising applications in cartilage regeneration and potentially in other regenerative medicine and tissue-engineering settings. Detailed characterization of these cells is lacking, thus compromising their full potential. Here we present the detailed characterization of the ex vivo expansion of synovium-derived stromal cells collected by three different biopsy methods: synovium-direct biopsy, arthroscopic trocar shaver blade filtrate, and cells isolated from synovial fluid (SF) samples. Isolation success rates were >75% for all sources. MSC obtained from the different samples displayed the characteristic immunophenotype of adult MSC, expressing CD73, CD90, and CD105. Arthroscopic shaver blade-derived cells showed the higher proliferation capacity measured by the fold increase (FI) in total cell number over several passages and considering their cumulative population doublings (CPD; 15 ± 0.85 vs. 13 ± 0.73 for synovium vs. 11 ± 0.97 for SF). Also, these cells were able to sustain an increased proliferation under hypoxic (2% O2) conditions (FI 55 ± 4 vs. 37 ± 7) after 17 days in culture. Expanded cells were able to differentiate successfully along the osteogenic, adipogenic, and chondrogenic lineages in vitro. Overall, these results demonstrate that synovial tissues represent a promising source for the isolation of human MSC, while depicting the variability associated to the biopsy method used, which impact cell behavior in vitro.  相似文献   
985.
986.
Phototropism is a growth response allowing plants to align their photosynthetic organs toward incoming light and thereby to optimize photosynthetic activity. Formation of a lateral gradient of the phytohormone auxin is a key step to trigger asymmetric growth of the shoot leading to phototropic reorientation. To identify important regulators of auxin gradient formation, we developed an auxin flux model that enabled us to test in silico the impact of different morphological and biophysical parameters on gradient formation, including the contribution of the extracellular space (cell wall) or apoplast. Our model indicates that cell size, cell distributions, and apoplast thickness are all important factors affecting gradient formation. Among all tested variables, regulation of apoplastic pH was the most important to enable the formation of a lateral auxin gradient. To test this prediction, we interfered with the activity of plasma membrane H+‐ATPases that are required to control apoplastic pH. Our results show that H+‐ATPases are indeed important for the establishment of a lateral auxin gradient and phototropism. Moreover, we show that during phototropism, H+‐ATPase activity is regulated by the phototropin photoreceptors, providing a mechanism by which light influences apoplastic pH.  相似文献   
987.
This study aimed to understand the response of photosynthesis and growth to e-CO2 conditions (800 vs. 400 μmol mol−1) of rice genotypes differing in source–sink relationships. A proxy trait called local C source–sink ratio was defined as the ratio of flag leaf area to the number of spikelets on the corresponding panicle, and five genotypes differing in this ratio were grown in a controlled greenhouse. Differential CO2 resources were applied either during the 2 weeks following heading (EXP1) or during the whole growth cycle (EXP2). Under e-CO2, low source–sink ratio cultivars (LSS) had greater gains in photosynthesis, and they accumulated less nonstructural carbohydrate in the flag leaf than high source–sink ratio cultivars (HSS). In EXP2, grain yield and biomass gain was also greater in LSS probably caused by their strong sink. Photosynthetic capacity response to e-CO2 was negatively correlated across genotypes with local C source–sink ratio, a trait highly conserved across environments. HSS were sink-limited under e-CO2, probably associated with low triose phosphate utilization (TPU) capacity. We suggest that the local C source–sink ratio is a potential target for selecting more CO2-responsive cultivars, pending validation for a broader genotypic spectrum and for field conditions.  相似文献   
988.
Otolith microchemistry studies indicate that growth-phase (yellow stage) anguillid eels commonly shift at irregular intervals between fresh and saline waters, but this technique has not detected regular seasonal migrations across salinity zones. We tested the ability of otolith microchemistry and stable isotope analysis to detect migrations of American eels (Anguilla rostrata) between salinity boundaries in two small stream–estuary systems in Canada’s Bay of Fundy. Although the two methods showed concordant classifications of recent residence history, most eels caught in fresh water in spring (68.8–89.7 %) and fall (78.8–83.3 %) showed microchemical and isotopic signatures that reflected occupancy of saline waters. These eels were classified as migrants which had summered in saline waters and then migrated to freshwater wintering grounds where they retained their saline signatures. In summer, most eels (85.0–100.0 %) captured in fresh and saline water had recent microchemical and isotopic signatures matching the habitat of capture. Our results suggest that lifetime otolith microchemistry profiles are unable to detect eel wintering migrations, a failure that is likely due to winter depression of otolith accretion. Elucidation of seasonal eel movements requires cross-seasonal and cross-site sampling for the microchemistry and stable isotope methods, or tagging studies. Seasonal saline–fresh eel migrations may be more common than previously appreciated, underlining the need for conservation of both habitats, and connectivity between the two.  相似文献   
989.
We performed live cell visualization assays to directly assess the interaction between competing adeno-associated virus (AAV) and herpes simplex virus type 1 (HSV-1) DNA replication. Our studies reveal the formation of separate AAV and HSV-1 replication compartments and the inhibition of HSV-1 replication compartment formation in the presence of AAV. AAV Rep is recruited into AAV replication compartments but not into those of HSV-1, while the single-stranded DNA-binding protein HSV-1 ICP8 is recruited into both AAV and HSV-1 replication compartments, although with differential staining patterns. Slot blot analysis of coinfected cells revealed a dose-dependent inhibition of HSV-1 DNA replication by wild-type AAV but not by rep-negative recombinant AAV. Consistent with this, Western blot analysis indicated that wild-type AAV affects the levels of the HSV-1 immediate-early protein ICP4 and the early protein ICP8 only modestly but strongly inhibits the accumulation of the late proteins VP16 and gC. Furthermore, we demonstrate that the presence of Rep in the absence of AAV DNA replication is sufficient for the inhibition of HSV-1. In particular, Rep68/78 proteins severely inhibit the formation of mature HSV-1 replication compartments and lead to the accumulation of ICP8 at sites of cellular DNA synthesis, a phenomenon previously observed in the presence of viral polymerase inhibitors. Taken together, our results suggest that AAV and HSV-1 replicate in separate compartments and that AAV Rep inhibits HSV-1 at the level of DNA replication.  相似文献   
990.
A specific high performance liquid chromatography-mass spectrometric (LC-MS/MS) assay was developed for the determination of captopryl in plasma. The retention time was 1.45 and 1.37 min for captopril and enalapril, respectively. The overall mean recovery, using SPE extraction with OASIS HLB cartridges, was found to be 107.2+/-9.5 and 100.04+/-2%, respectively. Calibration curves were linear in the concentration range of 10.00-2000.00 ng/ml, and the lower limit of quantification (LLOQ) was 10.00 ng/ml. The LLOQ was sensitive enough for detecting terminal phase concentrations of the drug. Inter-batch precision of the method ranged from 0.88 to 1.95%. Intra-batch accuracy ranged from 97.15 to 105.77%, while intra-batch precision ranged from 2.49 to 5.66% at concentrations of 30.00, 760.00 and 1500.00 ng/ml. The developed method was applied to study bioequivalence of captopril in a group of 25 human subjects at a single oral dose of a 50mg tablet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号