首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   544篇
  免费   32篇
  2021年   7篇
  2019年   5篇
  2018年   12篇
  2017年   3篇
  2016年   4篇
  2015年   10篇
  2014年   14篇
  2013年   24篇
  2012年   32篇
  2011年   28篇
  2010年   13篇
  2009年   17篇
  2008年   30篇
  2007年   19篇
  2006年   20篇
  2005年   23篇
  2004年   29篇
  2003年   19篇
  2002年   18篇
  2001年   10篇
  2000年   11篇
  1999年   11篇
  1998年   10篇
  1997年   7篇
  1996年   7篇
  1995年   8篇
  1994年   7篇
  1993年   11篇
  1992年   11篇
  1991年   11篇
  1990年   8篇
  1989年   8篇
  1988年   5篇
  1987年   7篇
  1986年   10篇
  1985年   6篇
  1984年   9篇
  1982年   5篇
  1981年   4篇
  1979年   6篇
  1978年   8篇
  1977年   5篇
  1976年   5篇
  1975年   4篇
  1974年   5篇
  1973年   6篇
  1972年   4篇
  1948年   3篇
  1943年   2篇
  1934年   2篇
排序方式: 共有576条查询结果,搜索用时 171 毫秒
81.
In inflamed venules, neutrophils roll on P- or E-selectin, engage P-selectin glycoprotein ligand-1 (PSGL-1), and signal extension of integrin α(L)β(2) in a low affinity state to slow rolling on intercellular adhesion molecule-1 (ICAM-1). Cytoskeleton-dependent receptor clustering often triggers signaling, and it has been hypothesized that the cytoplasmic domain links PSGL-1 to the cytoskeleton. Chemokines cause rolling neutrophils to fully activate α(L)β(2), leading to arrest on ICAM-1. Cytoskeletal anchorage of α(L)β(2) has been linked to chemokine-triggered extension and force-regulated conversion to the high affinity state. We asked whether PSGL-1 must interact with the cytoskeleton to initiate signaling and whether α(L)β(2) must interact with the cytoskeleton to extend. Fluorescence recovery after photobleaching of transfected cells documented cytoskeletal restraint of PSGL-1. The lateral mobility of PSGL-1 similarly increased by depolymerizing actin filaments with latrunculin B or by mutating the cytoplasmic tail to impair binding to the cytoskeleton. Converting dimeric PSGL-1 to a monomer by replacing its transmembrane domain did not alter its mobility. By transducing retroviruses expressing WT or mutant PSGL-1 into bone marrow-derived macrophages from PSGL-1-deficient mice, we show that PSGL-1 required neither dimerization nor cytoskeletal anchorage to signal β(2) integrin-dependent slow rolling on P-selectin and ICAM-1. Depolymerizing actin filaments or decreasing actomyosin tension in neutrophils did not impair PSGL-1- or chemokine-mediated integrin extension. Unlike chemokines, PSGL-1 did not signal cytoskeleton-dependent swing out of the β(2)-hybrid domain associated with the high affinity state. The cytoskeletal independence of PSGL-1-initiated, α(L)β(2)-mediated slow rolling differs markedly from the cytoskeletal dependence of chemokine-initiated, α(L)β(2)-mediated arrest.  相似文献   
82.
The energetic cost of maintaining lateral balance during human running   总被引:1,自引:0,他引:1  
To quantify the energetic cost of maintaining lateral balance during human running, we provided external lateral stabilization (LS) while running with and without arm swing and measured changes in energetic cost and step width variability (indicator of lateral balance). We hypothesized that external LS would reduce energetic cost and step width variability of running (3.0 m/s), both with and without arm swing. We further hypothesized that the reduction in energetic cost and step width variability would be greater when running without arm swing compared with running with arm swing. We controlled for step width by having subjects run along a single line (zero target step width), which eliminated any interaction effects of step width and arm swing. We implemented a repeated-measures ANOVA with two within-subjects fixed factors (external LS and arm swing) to evaluate main and interaction effects. When provided with external LS (main effect), subjects reduced net metabolic power by 2.0% (P = 0.032) and step width variability by 12.3% (P = 0.005). Eliminating arm swing (main effect) increased net metabolic power by 7.6% (P < 0.001) but did not change step width variability (P = 0.975). We did not detect a significant interaction effect between external LS and arm swing. Thus, when comparing conditions of running with or without arm swing, external LS resulted in a similar reduction in net metabolic power and step width variability. We infer that the 2% reduction in the net energetic cost of running with external LS reflects the energetic cost of maintaining lateral balance. Furthermore, while eliminating arm swing increased the energetic cost of running overall, arm swing does not appear to assist with lateral balance. Our data suggest that humans use step width adjustments as the primary mechanism to maintain lateral balance during running.  相似文献   
83.
Cheap, high-throughput approaches to generating biological data are transforming biology into a data-driven science and promise to similarly transform medicine. However, the road to genomic medicine is paved with challenges and uncertainty.  相似文献   
84.
Recombinant adeno-associated viral (rAAV) vectors can be used to introduce neurotrophic genes into injured CNS neurons, promoting survival and axonal regeneration. Gene therapy holds much promise for the treatment of neurotrauma and neurodegenerative diseases; however, neurotrophic factors are known to alter dendritic architecture, and thus we set out to determine whether such transgenes also change the morphology of transduced neurons. We compared changes in dendritic morphology of regenerating adult rat retinal ganglion cells (RGCs) after long-term transduction with rAAV2 encoding: (i) green fluorescent protein (GFP), or (ii) bi-cistronic vectors encoding GFP and ciliary neurotrophic factor (CNTF), brain-derived neurotrophic factor (BDNF) or growth-associated protein-43 (GAP43). To enhance regeneration, rats received an autologous peripheral nerve graft onto the cut optic nerve of each rAAV2 injected eye. After 5-8 months, RGCs with regenerated axons were retrogradely labeled with fluorogold (FG). Live retinal wholemounts were prepared and GFP positive (transduced) or GFP negative (non-transduced) RGCs injected iontophoretically with 2% lucifer yellow. Dendritic morphology was analyzed using Neurolucida software. Significant changes in dendritic architecture were found, in both transduced and non-transduced populations. Multivariate analysis revealed that transgenic BDNF increased dendritic field area whereas GAP43 increased dendritic complexity. CNTF decreased complexity but only in a subset of RGCs. Sholl analysis showed changes in dendritic branching in rAAV2-BDNF-GFP and rAAV2-CNTF-GFP groups and the proportion of FG positive RGCs with aberrant morphology tripled in these groups compared to controls. RGCs in all transgene groups displayed abnormal stratification. Thus in addition to promoting cell survival and axonal regeneration, vector-mediated expression of neurotrophic factors has measurable, gene-specific effects on the morphology of injured adult neurons. Such changes will likely alter the functional properties of neurons and may need to be considered when designing vector-based protocols for the treatment of neurotrauma and neurodegeneration.  相似文献   
85.
86.
Formation of dinitrosyl iron complexes (DNICs) was observed in a wide spectrum of pathophysiological conditions associated with overproduction of NO. To gain insight into the possible genotoxic effects of DNIC, we examined the interaction of histidinyl dinitrosyl iron complexes (HIS-DNIC) with DNA by means of circular dichroism. Formation of DNIC was monitored by EPR and FT/IR spectroscopy. Vibrational bands for aquated HIS-DNIC are reported. Dichroism results indicate that HIS-DNIC changes the conformation of the DNA in a dose-dependent manner in 10 mM phosphate buffer (pH 6). Increase of the buffer pH or ionic strength decreased the effect. Comparison of HIS-DNIC DNA interaction with the effect of hydrated Fe2+ ion revealed many similarities. The importance of iron ions in HIS-DNIC induced genotoxicity is confirmed by plasmid nicking assay. Treatment of pUC19 plasmid with 1 μM HIS-DNIC did not affect the plasmid supercoiling. Higher concentrations of HIS-DNIC induced single strand breaks. The effect was completely abrogated by addition of deferoxamine, a specific strong iron chelator. Our data reveal that formation of HIS-DNIC does not prevent DNA from iron-induced damage and imply that there is no direct interrelationship between iron–NO coordination and their mutual toxicity modulation.  相似文献   
87.
M Rodger  T Ramsay  D Fergusson 《Trials》2012,13(1):137-7
ABSTRACT: Clinicians, patients, governments, third-party payers, and the public take for granted that diagnostic tests are accurate, safe and effective. However, we may be seriously misled if we are relying on robust study design to ensure accurate, safe, and effective diagnostic tests. Properly conducted, randomized controlled trials are the gold standard for assessing the effectiveness and safety of interventions, yet are rarely conducted in the assessment of diagnostic tests. Instead, diagnostic cohort studies are commonly performed to assess the characteristics of a diagnostic test including sensitivity and specificity. While diagnostic cohort studies can inform us about the relative accuracy of an experimental diagnostic intervention compared to a reference standard, they do not inform us about whether the differences in accuracy are clinically important, or the degree of clinical importance (in other words, the impact on patient outcomes). In this commentary we provide the advantages of the diagnostic randomized controlled trial and suggest a greater awareness and uptake in their conduct. Doing so will better ensure that patients are offered diagnostic procedures that will make a clinical difference.  相似文献   
88.
Galectin-1 (Gal-1) and galectin-3 (Gal-3) exhibit profound but unique immunomodulatory activities in animals but their molecular mechanisms are incompletely understood. Early studies suggested that Gal-1 inhibits leukocyte function by inducing apoptotic cell death and removal, but recent studies show that some galectins induce exposure of the common death signal phosphatidylserine (PS) independently of apoptosis. In this study, we report that Gal-3, but not Gal-1, induces both PS exposure and apoptosis in primary activated human T cells, whereas both Gal-1 and Gal-3 induce PS exposure in neutrophils in the absence of cell death. Gal-1 and Gal-3 bind differently to the surfaces of T cells and only Gal-3 mobilizes intracellular Ca2+ in these cells, although Gal-1 and Gal-3 bind their respective T cell ligands with similar affinities. Although Gal-1 does not alter T cell viability, it induces IL-10 production and attenuates IFN-gamma production in activated T cells, suggesting a mechanism for Gal-1-mediated immunosuppression in vivo. These studies demonstrate that Gal-1 and Gal-3 induce differential responses in T cells and neutrophils, and identify the first factor, Gal-3, capable of inducing PS exposure with or without accompanying apoptosis in different leukocytes, thus providing a possible mechanism for galectin-mediated immunomodulation in vivo.  相似文献   
89.
The actin-binding protein -actinin-3 is one of the two isoforms of -actinin that are found in the Z-discs of skeletal muscle. -Actinin-3 is exclusively expressed in fast glycolytic muscle fibers. Homozygosity for a common polymorphism in the ACTN3 gene results in complete deficiency of -actinin-3 in about 1 billion individuals worldwide. Recent genetic studies suggest that the absence of -actinin-3 is detrimental to sprint and power performance in elite athletes and in the general population. In contrast, -actinin-3 deficiency appears to be beneficial for endurance athletes. To determine the effect of -actinin-3 deficiency on the contractile properties of skeletal muscle, we studied isolated extensor digitorum longus (fast-twitch) muscles from a specially developed -actinin-3 knockout (KO) mouse. -Actinin-3-deficient muscles showed similar levels of damage to wild-type (WT) muscles following lengthening contractions of 20% strain, suggesting that the presence or absence of -actinin-3 does not significantly influence the mechanical stability of the sarcomere in the mouse. -Actinin-3 deficiency does not result in any change in myosin heavy chain expression. However, compared with -actinin-3-positive muscles, -actinin-3-deficient muscles displayed longer twitch half-relaxation times, better recovery from fatigue, smaller cross-sectional areas, and lower twitch-to-tetanus ratios. We conclude that -actinin-3 deficiency results in fast-twitch, glycolytic fibers developing slower-twitch, more oxidative properties. These changes in the contractile properties of fast-twitch skeletal muscle from -actinin-3-deficient individuals would be detrimental to optimal sprint and power performance, but beneficial for endurance performance. extensor digitorum longus  相似文献   
90.
The afferent arteriolar myogenic response contributes to the autoregulation of renal blood flow (RBF) and glomerular filtration rate (GFR), and plays an essential role in protecting the kidney against hypertensive injury. Systolic blood pressure (SBP) is most closely linked to renal injury, and a myogenic response coupled to this signal would facilitate renal protection, whereas mean blood pressure (MBP) influences RBF and GFR. The relative role of SBP vs. MBP as the primary determinant of myogenic tone is an area of current controversy. Here, we describe two mathematical models, Model-Avg and Model-Sys, that replicate the different delays and time constants of vasoconstrictor and vasodilator phases of the myogenic responses of the afferent arteriole. When oscillating pressures are applied, the MBP determines the magnitude of the myogenic response of Model-Avg, and the SBP determines the response of Model-Sys. Simulations evaluating the responses of both models to square-wave pressure oscillations and to narrow pressure pulses show decidedly better agreement between Model-Sys and afferent arteriolar responses observed in cortical nephrons in the in vitro hydronephrotic kidney model. Analysis showing that the difference in delay times of the vasoconstrictor and vasodilator phases determines the frequency range over which SBP triggers Model-Sys's response was confirmed with simulations using authentic blood pressure waveforms. These observations support the postulate that SBP is the primary determinant of the afferent arteriole's myogenic response and indicate that differences in the delays in initiation vs. termination of the response, rather than in time constants, are integral to this phenomenon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号