首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1036篇
  免费   114篇
  国内免费   1篇
  2021年   12篇
  2020年   6篇
  2019年   9篇
  2018年   15篇
  2017年   14篇
  2016年   13篇
  2015年   39篇
  2014年   37篇
  2013年   40篇
  2012年   65篇
  2011年   65篇
  2010年   47篇
  2009年   35篇
  2008年   47篇
  2007年   71篇
  2006年   53篇
  2005年   70篇
  2004年   64篇
  2003年   67篇
  2002年   54篇
  2001年   15篇
  2000年   23篇
  1999年   22篇
  1998年   10篇
  1997年   13篇
  1996年   10篇
  1995年   6篇
  1994年   10篇
  1993年   6篇
  1992年   6篇
  1991年   6篇
  1990年   11篇
  1989年   11篇
  1988年   8篇
  1987年   9篇
  1985年   7篇
  1984年   10篇
  1982年   12篇
  1981年   9篇
  1980年   8篇
  1979年   6篇
  1978年   7篇
  1973年   6篇
  1972年   8篇
  1970年   6篇
  1964年   4篇
  1960年   4篇
  1957年   4篇
  1955年   4篇
  1953年   6篇
排序方式: 共有1151条查询结果,搜索用时 234 毫秒
81.
Miniature swine provide a preclinical model of hematopoietic cell transplantation (HCT) for studies of graft-versus-host disease. HCT between MHC-matched or ‑mismatched pigs can be performed to mimic clinical scenarios with outcomes that closely resemble those observed in human HCT recipients. With myeloablative conditioning, HCT across MHC barriers is typically fatal, with pigs developing severe (grade III or IV) GVHD involving the gastrointestinal tract, liver, and skin. Unlike rodent models, miniature swine provide an opportunity to perform extended longitudinal studies on individual animals, because multiple tissue biopsies can be harvested without the need for euthanasia. In addition, we have developed a swine GVHD scoring system that parallels that used in the human clinical setting. Given the similarities of GVHD in pigs and humans, we hope that the use of this scoring system facilitates clinical and scientific discourse between the laboratory and the clinic. We anticipate that results of swine studies will support the development of new strategies to improve the identification and treatment of GVHD in clinical HCT scenarios.Abbreviations: BMT, bone marrow transplantation; GVHD, graft-versus-host disease; GVL, graft-versus-leukemia; HCT, hematopoietic cell transplantation; TBI, total-body irradiation  相似文献   
82.
Remodelling the methylome is a hallmark of mammalian development and cell differentiation. However, current knowledge of DNA methylation dynamics in human tissue specification and organ development largely stems from the extrapolation of studies in vitro and animal models. Here, we report on the DNA methylation landscape using the 450k array of four human tissues (amnion, muscle, adrenal and pancreas) during the first and second trimester of gestation (9,18 and 22 weeks). We show that a tissue-specific signature, constituted by tissue-specific hypomethylated CpG sites, was already present at 9 weeks of gestation (W9). Furthermore, we report large-scale remodelling of DNA methylation from W9 to W22. Gain of DNA methylation preferentially occurred near genes involved in general developmental processes, whereas loss of DNA methylation mapped to genes with tissue-specific functions. Dynamic DNA methylation was associated with enhancers, but not promoters. Comparison of our data with external fetal adrenal, brain and liver revealed striking similarities in the trajectory of DNA methylation during fetal development. The analysis of gene expression data indicated that dynamic DNA methylation was associated with the progressive repression of developmental programs and the activation of genes involved in tissue-specific processes. The DNA methylation landscape of human fetal development provides insight into regulatory elements that guide tissue specification and lead to organ functionality.  相似文献   
83.

Background

Morphological and functional differences of the right and left ventricle are apparent in the adult human heart. A differential contribution of cardiac fibroblasts and smooth muscle cells (populations of epicardium-derived cells) to each ventricle may account for part of the morphological-functional disparity. Here we studied the relation between epicardial derivatives and the development of compact ventricular myocardium.

Results

Wildtype and Wt1CreERT2/+ reporter mice were used to study WT-1 expressing cells, and Tcf21lacZ/+ reporter mice and PDGFRα-/-;Tcf21LacZ/+ mice to study the formation of the cardiac fibroblast population. After covering the heart, intramyocardial WT-1+ cells were first observed at the inner curvature, the right ventricular postero-lateral wall and left ventricular apical wall. Later, WT-1+ cells were present in the walls of both ventricles, but significantly more pronounced in the left ventricle. Tcf21-LacZ + cells followed the same distribution pattern as WT-1+ cells but at later stages, indicating a timing difference between these cell populations. Within the right ventricle, WT-1+ and Tcf21-lacZ+ cell distribution was more pronounced in the posterior inlet part. A gradual increase in myocardial wall thickness was observed early in the left ventricle and at later stages in the right ventricle. PDGFRα-/-;Tcf21LacZ/+ mice showed deficient epicardium, diminished number of Tcf21-LacZ + cells and reduced ventricular compaction.

Conclusions

During normal heart development, spatio-temporal differences in contribution of WT-1 and Tcf21-LacZ + cells to right versus left ventricular myocardium occur parallel to myocardial thickening. These findings may relate to lateralized differences in ventricular (patho)morphology in humans.  相似文献   
84.
85.
In combination with novel linear covalently closed (LCC) DNA minivectors, referred to as DNA ministrings, a gemini surfactant-based synthetic vector for gene delivery has been shown to exhibit enhanced delivery and bioavailability while offering a heightened safety profile. Due to topological differences from conventional circular covalently closed (CCC) plasmid DNA vectors, the linear topology of LCC DNA ministrings may present differences with regards to DNA interaction and the physicochemical properties influencing DNA-surfactant interactions in the formulation of lipoplexed particles. In this study, N,N-bis(dimethylhexadecyl)-α,ω-propanediammonium(16-3-16)gemini-based synthetic vectors, incorporating either CCC plasmid or LCC DNA ministrings, were characterized and compared with respect to particle size, zeta potential, DNA encapsulation, DNase sensitivity, and in vitro transgene delivery efficacy. Through comparative analysis, differences between CCC plasmid DNA and LCC DNA ministrings led to variations in the physical properties of the resulting lipoplexes after complexation with 16-3-16 gemini surfactants. Despite the size disparities between the plasmid DNA vectors (CCC) and DNA ministrings (LCC), differences in DNA topology resulted in the generation of lipoplexes of comparable particle sizes. The capacity for ministring (LCC) derived lipoplexes to undergo complete counterion release during lipoplex formation contributed to improved DNA encapsulation, protection from DNase degradation, and in vitro transgene delivery.  相似文献   
86.
The actin-associated protein palladin has been shown to be involved in differentiation processes in non-muscle tissues. However, but its function in skeletal muscle has rarely been studied. Palladin plays important roles in the regulation of diverse actin-related signaling in a number of cell types. Since intact actin-cytoskeletal remodeling is necessary for myogenesis, in the present study, we pursue to investigate the role of actin-associated palladin in skeletal muscle differentiation. Palladin in C2C12 myoblasts is knocked-down using specific small interfering RNA (siRNA). The results show that down-regulation of palladin decreased migratory activity of mouse skeletal muscle C2C12 myoblasts. Furthermore, the depletion of palladin enhances C2C12 vitality and proliferation. Of note, the loss of palladin promotes C2C12 to express the myosin heavy chain, suggesting that palladin has a role in the modulation of C2C12 differentiation. It is thus proposed that palladin is required for normal C2C12 myogenesis in vitro.  相似文献   
87.
Recovery of a specimen of Euowenia grata (De Vis, 1887) from mid Pliocene sediments of the Tirari Formation on the bank of the Warburton River in the Lake Eyre Basin provides the first recorded account of this species in South Australia. The specimen comprises a partial skull including left and right premaxillae, maxillae, and left zygomatic arch, along with an almost complete upper dentition (missing the left I2). An articulated hind leg and pes found downstream at the same stratigraphic level, as well as both fore- and hind-feet of a single individual, are also referred to E. grata and represent the first postcranial material assigned to the species. A reconstruction of the pes indicates that much more of the body weight was borne by the tarsus in this species than in plesiomorphic diprotodontids, such as Nimbadon Hand et al., 1993, or Ngapakaldia Stirton, 1967, although E. grata does not exhibit the more extreme enlargement of the tarsus seen in graviportal Pleistocene diprotodontids. E. grata is found here also to be the only known Australian marsupial, extant or extinct, to exhibit fusion of all three cuneiform bones in the tarsus. We suggest that the diprotodontine hind limb and pes had evolved graviportal adaptations in the Pliocene as well as in the Pleistocene members. We also suggest that E. grata may have been able to rear up against trees while browsing.  相似文献   
88.
Cell misidentification and cross-contamination have plagued biomedical research for as long as cells have been employed as research tools. Examples of misidentified cell lines continue to surface to this day. Efforts to eradicate the problem by raising awareness of the issue and by asking scientists voluntarily to take appropriate actions have not been successful. Unambiguous cell authentication is an essential step in the scientific process and should be an inherent consideration during peer review of papers submitted for publication or during review of grants submitted for funding. In order to facilitate proper identity testing, accurate, reliable, inexpensive, and standardized methods for authentication of cells and cell lines must be made available. To this end, an international team of scientists is, at this time, preparing a consensus standard on the authentication of human cells using short tandem repeat (STR) profiling. This standard, which will be submitted for review and approval as an American National Standard by the American National Standards Institute, will provide investigators guidance on the use of STR profiling for authenticating human cell lines. Such guidance will include methodological detail on the preparation of the DNA sample, the appropriate numbers and types of loci to be evaluated, and the interpretation and quality control of the results. Associated with the standard itself will be the establishment and maintenance of a public STR profile database under the auspices of the National Center for Biotechnology Information. The consensus standard is anticipated to be adopted by granting agencies and scientific journals as appropriate methodology for authenticating human cell lines, stem cells, and tissues.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号