首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1033篇
  免费   114篇
  国内免费   1篇
  2021年   12篇
  2020年   6篇
  2019年   9篇
  2018年   15篇
  2017年   14篇
  2016年   13篇
  2015年   39篇
  2014年   37篇
  2013年   40篇
  2012年   65篇
  2011年   65篇
  2010年   47篇
  2009年   35篇
  2008年   47篇
  2007年   71篇
  2006年   53篇
  2005年   70篇
  2004年   64篇
  2003年   67篇
  2002年   54篇
  2001年   15篇
  2000年   23篇
  1999年   22篇
  1998年   10篇
  1997年   13篇
  1996年   10篇
  1995年   6篇
  1994年   10篇
  1993年   6篇
  1992年   6篇
  1991年   6篇
  1990年   9篇
  1989年   11篇
  1988年   8篇
  1987年   9篇
  1985年   7篇
  1984年   10篇
  1982年   12篇
  1981年   9篇
  1980年   8篇
  1979年   6篇
  1978年   7篇
  1973年   6篇
  1972年   8篇
  1970年   6篇
  1969年   4篇
  1964年   4篇
  1957年   4篇
  1955年   4篇
  1953年   6篇
排序方式: 共有1148条查询结果,搜索用时 15 毫秒
101.
Changes in sexual signals have the potential to promote rapid divergence and reproductive isolation among populations of animals. Thus, identifying processes contributing to variation in signals is key to understanding the drivers of speciation. However, it is difficult to identify the processes initiating changes in signals in empirical systems because (1) the demographic history of populations under study is usually unclear, and (2) there is no unified hypothesis‐testing framework for evaluating the simultaneous contribution of multiple processes. A unique system for study in the Hawaiian Islands, the planthopper species Nesosydne chambersi, offers a clear demographic context to disentangle these factors. By measuring variation in male vibratory sexual signals across different genetic populations on the island of Hawaii, we found that that multiple signal traits varied significantly between populations. We developed a mixed modelling framework to simultaneously test competing hypotheses about which processes contribute to changes in signal traits: genetic drift, sensory drive or reproductive character displacement. Our findings suggest that signal divergence proceeds along different axes for different signal traits under the influence of both neutral and selective processes. They are the first, to our knowledge, to document the relative importance of multiple processes on divergence in sexual signals.  相似文献   
102.
A novel chemosensitive ultrathin film with high selectivity was developed for the detection of naproxen, paracetamol, and theophylline using non-covalent electropolymerized molecular imprinted polymers (E-MIP). A series of monofunctional and bifunctional H-bonding terthiophene and carbazole monomers were compared for imprinting these drugs without the use of a separate cross-linker. A key step is the fast and efficient potentiostatic method of washing the template, which facilitated enhanced real-time sensing by surface plasmon resonance (SPR) spectroscopy. Various surface characterizations (contact angle, ellipsometry, XPS, AFM) of the E-MIP film verified the templating and release of the drug from the cross-linked conducting polymer film.  相似文献   
103.
The internalization of Borrelia burgdorferi, the causative agent of Lyme disease, by phagocytes is essential for an effective activation of the immune response to this pathogen. The intracellular, cytosolic receptor Nod2 has been shown to play varying roles in either enhancing or attenuating inflammation in response to different infectious agents. We examined the role of Nod2 in responses to B. burgdorferi. In vitro stimulation of Nod2 deficient bone marrow derived macrophages (BMDM) resulted in decreased induction of multiple cytokines, interferons and interferon regulated genes compared with wild-type cells. However, B. burgdorferi infection of Nod2 deficient mice resulted in increased rather than decreased arthritis and carditis compared to control mice. We explored multiple potential mechanisms for the paradoxical response in in vivo versus in vitro systems and found that prolonged stimulation with a Nod2 ligand, muramyl dipeptide (MDP), resulted in tolerance to stimulation by B. burgdorferi. This tolerance was lost with stimulation of Nod2 deficient cells that cannot respond to MDP. Cytokine patterns in the tolerance model closely paralleled cytokine profiles in infected Nod2 deficient mice. We propose a model where Nod2 has an enhancing role in activating inflammation in early infection, but moderates inflammation after prolonged exposure to the organism through induction of tolerance.  相似文献   
104.
Genomic instability is a common feature of cancer etiology. This provides an avenue for therapeutic intervention, since cancer cells are more susceptible than normal cells to DNA damaging agents. However, there is growing evidence that the epigenetic mechanisms that impact DNA methylation and histone status also contribute to genomic instability. The DNA damage response, for example, is modulated by the acetylation status of histone and non-histone proteins, and by the opposing activities of histone acetyltransferase and histone deacetylase (HDAC) enzymes. Many HDACs overexpressed in cancer cells have been implicated in protecting such cells from genotoxic insults. Thus, HDAC inhibitors, in addition to unsilencing tumor suppressor genes, also can silence DNA repair pathways, inactivate non-histone proteins that are required for DNA stability, and induce reactive oxygen species and DNA double-strand breaks. This review summarizes how dietary phytochemicals that affect the epigenome also can trigger DNA damage and repair mechanisms. Where such data is available, examples are cited from studies in vitro and in vivo of polyphenols, organosulfur/organoselenium compounds, indoles, sesquiterpene lactones, and miscellaneous agents such as anacardic acid. Finally, by virtue of their genetic and epigenetic mechanisms, cancer chemopreventive agents are being redefined as chemo- or radio-sensitizers. A sustained DNA damage response coupled with insufficient repair may be a pivotal mechanism for apoptosis induction in cancer cells exposed to dietary phytochemicals. Future research, including appropriate clinical investigation, should clarify these emerging concepts in the context of both genetic and epigenetic mechanisms dysregulated in cancer, and the pros and cons of specific dietary intervention strategies.  相似文献   
105.
106.
107.
Sunami E  de Maat M  Vu A  Turner RR  Hoon DS 《PloS one》2011,6(4):e18884

Background

Methylation levels of genomic repeats such as long interspersed nucleotide elements (LINE-1) are representative of global methylation status and play an important role in maintenance of genomic stability. The objective of the study was to assess LINE-1 methylation status in colorectal cancer (CRC) in relation to adenomatous and malignant progression, tissue heterogeneity, and TNM-stage.

Methodology/Principal Findings

DNA was collected by laser-capture microdissection (LCM) from normal, adenoma, and cancer tissue from 25 patients with TisN0M0 and from 92 primary CRC patients of various TNM-stages. The paraffin-embedded tissue sections were treated by in-situ DNA sodium bisulfite modification (SBM). LINE-1 hypomethylation index (LHI) was measured by absolute quantitative analysis of methylated alleles (AQAMA) realtime PCR; a greater index indicated enhanced hypomethylation. LHI in normal, cancer mesenchymal, adenoma, and CRC tissue was 0.38 (SD 0.07), 0.37 (SD 0.09), 0.49 (SD 0.10) and 0.53 (SD 0.08), respectively. LHI was significantly greater in adenoma tissue compared to its contiguous normal epithelium (P = 0.0003) and cancer mesenchymal tissue (P<0.0001). LHI did not differ significantly between adenoma and early cancer tissue of Tis stage (P = 0.20). LHI elevated with higher T-stage (P<0.04), was significantly greater in node-positive than node-negative CRC patients (P = 0.03), and was significantly greater in stage IV than all other disease stages (P<0.05).

Conclusion/Significance

By using in-situ SBM and LCM cell selection we demonstrated early onset of LINE-1 demethylation during adenomatous change of colorectal epithelial cells and demonstrated that LINE-1 demethylation progression is linear in relation to TNM-stage progression.  相似文献   
108.
The ability of an ion channel to open in response to a defined stimulus is central to its function. In ligand-gated channels, pore opening is conferred through transduction of a conformational change in a gating domain to the helices of the pore. Here, we present the construction of a designed cyclic nucleotide-gated (CNG) channel, named KcsA-CNG, by addition of a prokaryotic cyclic nucleotide-binding domain to a KcsA-derived K+ channel. This channel is functional in lipid bilayers at physiological pH and has the combined properties of both of its parent-derived components. It conducts K+ and is blocked by the K+ channel inhibitors Na+ and agitoxin-2. Channel open times are increased by about two orders of magnitude compared to wild-type KcsA. The average number of open channels increases by approximately 50% upon addition of cAMP. Although the absolute open probabilities are somewhat variable from one channel to the next, the property of cyclic nucleotide sensitivity is very reproducible. An apparent Kd value of approximately 90 nM was estimated. The successful construction of a cyclic nucleotide-gated KcsA K+ channel suggests that it should be possible to produce channels that will respond to novel ligands.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号