首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   228篇
  免费   43篇
  271篇
  2023年   1篇
  2022年   4篇
  2021年   4篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   4篇
  2015年   13篇
  2014年   18篇
  2013年   15篇
  2012年   14篇
  2011年   21篇
  2010年   9篇
  2009年   13篇
  2008年   4篇
  2007年   14篇
  2006年   8篇
  2005年   7篇
  2004年   12篇
  2003年   8篇
  2002年   6篇
  2001年   12篇
  2000年   10篇
  1999年   6篇
  1998年   11篇
  1997年   5篇
  1996年   4篇
  1995年   5篇
  1994年   4篇
  1993年   6篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1975年   2篇
  1974年   1篇
  1971年   1篇
  1968年   1篇
  1960年   1篇
  1942年   1篇
排序方式: 共有271条查询结果,搜索用时 15 毫秒
51.
Vancomycin, a commonly used antibiotic, can be nephrotoxic. Known risk factors such as age, creatinine clearance, vancomycin dose / dosing interval, and concurrent nephrotoxic medications fail to accurately predict nephrotoxicity. To identify potential genomic risk factors, we performed a genome-wide association study (GWAS) of serum creatinine levels while on vancomycin in 489 European American individuals and validated findings in three independent cohorts totaling 439 European American individuals. In primary analyses, the chromosome 6q22.31 locus was associated with increased serum creatinine levels while on vancomycin therapy (most significant variant rs2789047, risk allele A, β = -0.06, p = 1.1 x 10-7). SNPs in this region had consistent directions of effect in the validation cohorts, with a meta-p of 1.1 x 10-7. Variation in this region on chromosome 6, which includes the genes TBC1D32/C6orf170 and GJA1 (encoding connexin43), may modulate risk of vancomycin-induced kidney injury.  相似文献   
52.
Ca2+-dependent inhibition of native and isolated ryanodine receptor (RyR) calcium release channels from sheep heart and rabbit skeletal muscle was investigated using the lipid bilayer technique. We found that cytoplasmic Ca2+ inhibited cardiac RyRs with an average K m = 15 mm, skeletal RyRs with K m = 0.7 mm and with Hill coefficients of 2 in both isoforms. This is consistent with measurements of Ca2+ release from the sarcoplasmic reticulum (SR) in skinned fibers and with [3H]-ryanodine binding to SR vesicles, but is contrary to previous bilayer studies which were unable to demonstrate Ca2+-inhibition in cardiac RyRs (Chu, Fill, Stefani &; Entman (1993) J. Membrane Biol. 135, 49–59). Ryanodine prevented Ca2+ from inhibiting either cardiac or skeletal RyRs. Ca2+-inhibition in cardiac RyRs appeared to be the most fragile characteristic of channel function, being irreversibly disrupted by 500 mm Cs+, but not by 500 mm K+, in the cis bath or by solublization with the detergent CHAPS. These treatments had no effect on channel regulation by AMP-PNP, caffeine, ryanodine, ruthenium red, or Ca2+-activation. Ca2+-inhibition in skeletal RyRs was retained in the presence of 500 mm Cs+. Our results provide an explanation for previous findings in which cardiac RyRs in bilayers with 250 mm Cs+ in the solutions fail to demonstrate Ca2+-inhibition, while Ca2+-inhibition of Ca2+ release is observed in vesicle studies where K+ is the major cation. A comparison of open and closed probability distributions from individual RyRs suggested that the same gating mechanism mediates Ca2+-inhibition in skeletal RyRs and cardiac RyRs, with different Ca2+ affinities for inhibition. We conclude that differences in the Ca2+-inhibition in cardiac and skeletal channels depends on their Ca2+ binding properties.  相似文献   
53.
54.
SCN5A encodes the predominant voltage-gated sodium channel isoform in human heart and nearly 100 variants have now been described and studied in vitro. However, development of animal models to analyze function of such large numbers of human gene variants represents a continuing challenge in translational medicine. Here, we describe the implementation of a two stage procedure, recombinase-mediated cassette exchange (RMCE), to efficiently and rapidly generate mice in which a full-length human cDNA replaces expression of the murine ortholog. In the first step of RMCE, conventional homologous recombination in mouse ES cells was used to replace scn5a exon 2 (that contains the translation start site) with a cassette acceptor that includes the thymidine kinase gene, flanked by loxP/inverted loxP sites. In the second step, the cassette acceptor site was replaced by the full-length wild-type human SCN5A cDNA by Cre/loxP-mediated recombination. The exchange event occurred in 7/29 (24%) colonies, and the time from electroporation to first homozygotes was only 8 months. PCR-restriction fragment length polymorphism (RFLP) showed that the murine isoform was replaced by the human one, and functional studies indicated that mice with human cardiac sodium channels have wild-type sodium current density, action potential durations, heart rates, and QRS durations. These data demonstrate that RMCE can be used to generate mice in which a targeted allele can be rapidly and efficiently replaced by variants of choice, and thereby can serve as an enabling approach for the functional characterization of ion channel and other DNA variants.  相似文献   
55.
Wu WH  Gersch E  Kwak K  Jagu S  Karanam B  Huh WK  Garcea RL  Roden RB 《PloS one》2011,6(11):e27141
Capsomers were produced in bacteria as glutathione-S-transferase (GST) fusion proteins with human papillomavirus type 16 L1 lacking the first nine and final 29 residues (GST-HPV16L1Δ) alone or linked with residues 13–47 of HPV18, HPV31 and HPV45 L2 in tandem (GST-HPV16L1Δ-L2x3). Subcutaneous immunization of mice with GST-HPV16L1Δ or GST-HPV16L1Δ-L2x3 in alum and monophosphoryl lipid A induced similarly high titers of HPV16 neutralizing antibodies. GST-HPV16L1Δ-L2x3 also elicited moderate L2-specific antibody titers. Intravaginal challenge studies showed that immunization of mice with GST-HPV16 L1Δ or GST-HPV16L1Δ-L2x3 capsomers, like Cervarix®, provided complete protection against HPV16. Conversely, vaccination with GST-HPV16 L1Δ capsomers failed to protect against HPV18 challenge, whereas mice immunized with either GST-HPV16L1Δ-L2x3 capsomers or Cervarix® were each completely protected. Thus, while the L2-specific response was moderate, it did not interfere with immunity to L1 in the context of GST-HPV16L1Δ-L2x3 and is sufficient to mediate L2-dependent protection against an experimental vaginal challenge with HPV18.  相似文献   
56.
The effects of quinidine on single inward rectifier K channels were investigated in cell-attached patches with 4.5 mM pipette potassium concentrations. Under these conditions, the single-channel slope conductance of the predominant conductance level of the inward rectifier channels was 3.9 +/- 0.3 pS at membrane potentials between -75 and -150 mV. Quinidine reversibly decreased the likelihood of channel opening to the main conductance level without reducing the single-channel conductance, and also reduced the probability of channel opening to subconducting levels. Quinidine had no significant effects on the channel open times, and the inhibition of channel opening was only slightly voltage dependent over the range of membrane potentials investigated. Quinidine induced a complete cessation of channel openings for brief periods (up to 2 min), suggesting that quinidine promoted occupancy of a state from which opening was less likely. Occasional long periods (up to an hour) with an absence of channel activity were also observed but quinidine did not appear to promote this behavior. The data suggest that quinidine decreases the ability of the channel to enter both main and subconducting states. By binding to a particular closed conformation of the channel, quinidine could reduce the likelihood of channel opening. The main features of these observations could be accounted for using the three-state kinetic model proposed by Sakmann, B. and G. Trube (1984b. J. Physiol. [Lond.]. 347:659-683.) with quinidine binding to the middle closed state.  相似文献   
57.
A literature compilation demonstrated a linear relationship between microbial growth yield and the free energy of aerobic and anaerobic (respiratory and/or fermentative) metabolism of glucose, ethanol, formate, acetate, lactate, propionate, butyrate, and H(2). This relationship provides a means to estimate growth yields for modeling microbial redox metabolism in soil and sedimentary environments.  相似文献   
58.
Vanadium in the 4+ (vanadyl-ion) and 5+ (vanadate-ion) oxidation state stimulates furosemide-sensitive electrogenic Cl- secretion in isolated epithelia of rabbit descending colon. This effect is associated with an increased release of prostaglandin E2 from the tissue. Inhibitors of phospholipase A2 or cyclooxygenase abolish both vanadium-induced release of prostaglandin E2 and Cl- secretion. Neuronal mechanisms are not likely to be involved, as tetrodotoxin does not affect the vanadate induced Cl- secretion. Although vanadate is known to inhibit Na+,K(+)-ATPase activity, no inhibition of active Na+ transport was observed in intact colonic epithelia suggesting a rapid intracellular reduction of vanadate ions to vanadyl ions which have no inhibitory effect on the Na+,K(+)-ATPase. The present findings therefore indicate that vanadate stimulated colonic Cl- secretion involves intracellular conversion of vanadate to vanadyl and release of prostaglandin E2.  相似文献   
59.
Pyrite (FeS2) is the most abundant sulfide mineral on Earth and represents a significant reservoir of reduced iron and sulfur both today and in the geologic past. In modern environments, oxidative transformations of pyrite and other metal sulfides play a key role in terrestrial element partitioning with broad impacts to contaminant mobility and the formation of acid mine drainage systems. Although the role of aerobic micro‐organisms in pyrite oxidation under acidic‐pH conditions is well known, to date there is very little known about the capacity for aerobic micro‐organisms to oxidize pyrite at circumneutral pH. Here, we describe two enrichment cultures, obtained from pyrite‐bearing subsurface sediments, that were capable of sustained cell growth linked to pyrite oxidation and sulfate generation at neutral pH. The cultures were dominated by two Rhizobiales species (Bradyrhizobium sp. and Mesorhizobium sp.) and a Ralstonia species. Shotgun metagenomic sequencing and genome reconstruction indicated the presence of Fe and S oxidation pathways in these organisms, and the presence of a complete Calvin–Benson–Bassham CO2 fixation system in the Bradyrhizobium sp. Oxidation of pyrite resulted in thin (30–50 nm) coatings of amorphous Fe(III) oxide on the pyrite surface, with no other secondary Fe or S phases detected by electron microscopy or X‐ray absorption spectroscopy. Rates of microbial pyrite oxidation were approximately one order of magnitude higher than abiotic rates. These results demonstrate the ability of aerobic microbial activity to accelerate pyrite oxidation and expand the potential contribution of micro‐organisms to continental sulfide mineral weathering around the time of the Great Oxidation Event to include neutral‐pH environments. In addition, our findings have direct implications for the geochemistry of modern sedimentary environments, including stimulation of the early stages of acid mine drainage formation and mobilization of pyrite‐associated metals.  相似文献   
60.
Recent studies have suggested that nitric oxide (NO) binding to hemoglobin (Hb) may lead to the inhibition of sickle cell fiber formation and the dissolution of sickle cell fibers. NO can react with Hb in at least 3 ways: 1) formation of Hb(II)NO, 2) formation of methemoglobin, and 3) formation of S-nitrosohemoglobin, through nitrosylation of the beta93 Cys residue. In this study, the role of beta93 Cys in the mechanism of sickle cell fiber inhibition is investigated through chemical modification with N-ethylmaleimide. UV resonance Raman, FT-IR and electrospray ionization mass spectroscopic methods in conjunction with equilibrium solubility and kinetic studies are used to characterize the effect of beta93 Cys modification on Hb S fiber formation. Both FT-IR spectroscopy and electrospray mass spectrometry results demonstrate that modification can occur at both the beta93 and alpha104 Cys residues under relatively mild reaction conditions. Equilibrium solubility measurements reveal that singly-modified Hb at the beta93 position leads to increased amounts of fiber formation relative to unmodified or doubly-modified Hb S. Kinetic studies confirm that modification of only the beta93 residue leads to a faster onset of polymerization. UV resonance Raman results indicate that modification of the alpha104 residue in addition to the beta93 residue significantly perturbs the alpha(1)beta(2) interface, while modification of only beta93 does not. These results in conjunction with the equilibrium solubility and kinetic measurements are suggestive that modification of the alpha104 Cys residue and not the beta93 Cys residue leads to T-state destabilization and inhibition of fiber formation. These findings have implications for understanding the mechanism of NO binding to Hb and NO inhibition of Hb S fiber formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号