首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3236篇
  免费   319篇
  3555篇
  2021年   47篇
  2020年   26篇
  2019年   32篇
  2018年   35篇
  2017年   38篇
  2016年   55篇
  2015年   94篇
  2014年   120篇
  2013年   151篇
  2012年   210篇
  2011年   175篇
  2010年   105篇
  2009年   93篇
  2008年   180篇
  2007年   154篇
  2006年   162篇
  2005年   146篇
  2004年   165篇
  2003年   130篇
  2002年   117篇
  2001年   72篇
  2000年   74篇
  1999年   61篇
  1998年   26篇
  1997年   24篇
  1996年   35篇
  1995年   26篇
  1994年   37篇
  1993年   38篇
  1992年   46篇
  1991年   37篇
  1990年   49篇
  1989年   25篇
  1988年   37篇
  1987年   36篇
  1986年   43篇
  1985年   48篇
  1984年   32篇
  1983年   28篇
  1982年   32篇
  1980年   24篇
  1979年   38篇
  1978年   31篇
  1976年   24篇
  1975年   24篇
  1974年   28篇
  1973年   25篇
  1972年   24篇
  1967年   22篇
  1966年   31篇
排序方式: 共有3555条查询结果,搜索用时 15 毫秒
91.
The purpose of this study was to determine the inter- and intra-examiner reliability, and stride-to-stride reliability, of an accelerometer-based gait analysis system which measured 3D accelerations of the upper and lower body during self-selected slow, preferred and fast walking speeds. Eight subjects attended two testing sessions in which accelerometers were attached to the head, neck, lower trunk, and right shank. In the initial testing session, two different examiners attached the accelerometers and performed the same testing procedures. A single examiner repeated the procedure in a subsequent testing session. All data were collected using a new wireless gait analysis system, which features near real-time data transmission via a Bluetooth network. Reliability for each testing condition (4 locations, 3 directions, 3 speeds) was quantified using a waveform similarity statistic known as the coefficient of multiple determination (CMD). CMD's ranged from 0.60 to 0.98 across all test conditions and were not significantly different for inter-examiner (0.86), intra-examiner (0.87), and stride-to-stride reliability (0.86). The highest repeatability for the effect of location, direction and walking speed were for the shank segment (0.94), the vertical direction (0.91) and the fast walking speed (0.91), respectively. Overall, these results indicate that a high degree of waveform repeatability was obtained using a new gait system under test-retest conditions involving single and dual examiners. Furthermore, differences in acceleration waveform repeatability associated with the reapplication of accelerometers were small in relation to normal motor variability.  相似文献   
92.
Spectral analysis of ventilation in elderly subjects awake and asleep   总被引:3,自引:0,他引:3  
We studied the periodicities of ventilation in elderly subjects using digital comb filtering. Two groups of subjects were studied, those with and without sleep apnea. Measurements were made in wakefulness, stage 1-2 sleep, and where possible in stage 3-4 sleep. For each of the digital filters we calculated the average power of the oscillatory output. To compare subject groups we first specifically determined the average power in the filter with the maximum output. The mean of this measurement was greater in elderly subjects with apnea compared with those without apnea, both during wakefulness and stage 1-2 sleep. In both groups of subjects the cycle time of the major ventilatory oscillations was on the order of 40-60 s. There was no difference in this cycle time between the two groups of subjects in wakefulness or stage 1-2 sleep. Thus, whereas similar oscillatory processes occur in subjects with and without apnea, it is the magnitude of the oscillation that differs between the two groups. These conclusions are supported by analysis of the output of individual filters of the digital comb filter. In both groups, stage 1-2 sleep produced significantly increased oscillations in ventilation. Both in wakefulness and stage 1-2 sleep, significantly greater periodicities occurred in the apneic compared with the nonapneic group. In the few subjects who had sufficient data in stage 3-4 sleep for spectral analysis, ventilatory oscillations were virtually absent in this state. Our data suggest that subjects who develop apnea during sleep have an increased propensity for periodic breathing even while awake.  相似文献   
93.
Attention is a core cognitive mechanism that allows the brain to allocate limited resources depending on current task demands. A number of frontal and posterior parietal cortical areas, referred to collectively as the fronto-parietal attentional control network, are engaged during attentional allocation in both humans and non-human primates. Numerous studies have examined this network in the human brain using various neuroimaging and scalp electrophysiological techniques. However, little is known about how these frontal and parietal areas interact dynamically to produce behavior on a fine temporal (sub-second) and spatial (sub-centimeter) scale. We addressed how human fronto-parietal regions control visuospatial attention on a fine spatiotemporal scale by recording electrocorticography (ECoG) signals measured directly from subdural electrode arrays that were implanted in patients undergoing intracranial monitoring for localization of epileptic foci. Subjects (n = 8) performed a spatial-cuing task, in which they allocated visuospatial attention to either the right or left visual field and detected the appearance of a target. We found increases in high gamma (HG) power (70–250 Hz) time-locked to trial onset that remained elevated throughout the attentional allocation period over frontal, parietal, and visual areas. These HG power increases were modulated by the phase of the ongoing delta/theta (2–5 Hz) oscillation during attentional allocation. Critically, we found that the strength of this delta/theta phase-HG amplitude coupling predicted reaction times to detected targets on a trial-by-trial basis. These results highlight the role of delta/theta phase-HG amplitude coupling as a mechanism for sub-second facilitation and coordination within human fronto-parietal cortex that is guided by momentary attentional demands.  相似文献   
94.
The Deepwater Horizon (DWH) oil spill in the spring of 2010 resulted in an input of ∼4.1 million barrels of oil to the Gulf of Mexico; >22% of this oil is unaccounted for, with unknown environmental consequences. Here we investigated the impact of oil deposition on microbial communities in surface sediments collected at 64 sites by targeted sequencing of 16S rRNA genes, shotgun metagenomic sequencing of 14 of these samples and mineralization experiments using 14C-labeled model substrates. The 16S rRNA gene data indicated that the most heavily oil-impacted sediments were enriched in an uncultured Gammaproteobacterium and a Colwellia species, both of which were highly similar to sequences in the DWH deep-sea hydrocarbon plume. The primary drivers in structuring the microbial community were nitrogen and hydrocarbons. Annotation of unassembled metagenomic data revealed the most abundant hydrocarbon degradation pathway encoded genes involved in degrading aliphatic and simple aromatics via butane monooxygenase. The activity of key hydrocarbon degradation pathways by sediment microbes was confirmed by determining the mineralization of 14C-labeled model substrates in the following order: propylene glycol, dodecane, toluene and phenanthrene. Further, analysis of metagenomic sequence data revealed an increase in abundance of genes involved in denitrification pathways in samples that exceeded the Environmental Protection Agency (EPA)''s benchmarks for polycyclic aromatic hydrocarbons (PAHs) compared with those that did not. Importantly, these data demonstrate that the indigenous sediment microbiota contributed an important ecosystem service for remediation of oil in the Gulf. However, PAHs were more recalcitrant to degradation, and their persistence could have deleterious impacts on the sediment ecosystem.  相似文献   
95.
Leukaemia is often associated with genetic alterations such as translocations, amplifications and deletions, and recurrent chromosome abnormalities are used as markers of diagnostic and prognostic relevance. However, a proportion of acute myeloid leukaemia (AML) cases have an apparently normal karyotype despite comprehensive cytogenetic analysis. Based on conventional cytogenetic analysis of banded chromosomes, we selected a series of 23 paediatric patients with acute myeloid leukaemia and performed whole genome array comparative genome hybridization (aCGH) using DNA samples derived from the same patients. Imbalances involving large chromosomal regions or entire chromosomes were detected by aCGH in seven of the patients studied. Results were validated by fluorescence in situ hybridization (FISH) to both interphase nuclei and metaphase chromosomes using appropriate bacterial artificial chromosome (BAC) probes. The majority of these copy number alterations (CNAs) were confirmed by FISH and found to localize to the interphase rather than metaphase nuclei. Furthermore, the proliferative states of the cells analyzed by FISH were tested by immunofluorescence using an antibody against the proliferation marker pKi67. Interestingly, these experiments showed that, in the vast majority of cases, the changes appeared to be confined to interphase nuclei in a non-proliferative status.  相似文献   
96.
97.
98.
LEARNING OBJECTIVES: After studying this article, the reader should be able to: 1. Describe the soft-tissue, cartilaginous, and bony anatomy of the nose. 2. Describe the anatomy and function of the nasal valves. 3. Discuss the governing physiologic principles responsible for airflow dynamics. 4. Discuss the various functions of the nose. 5. Demonstrate an appropriate evaluation of the nasal airway. 6. Discuss the differential diagnosis of nasal obstruction. 7. Discuss appropriate management options for nasal airway obstruction.The nose is a complex, multifunctional organ that requires respect and understanding from the rhinoplasty surgeon. The etiologic and pathologic characteristics of each patient's nasal airway problem determine the treatment of the nasal airway. Frequently, medical management is sufficient without operative intervention. Recent advances have shown that nasal valves in airway patency may play a more important role than the septum. The rhinoplasty surgeon's understanding of the anatomy and physiology of the nasal airway, along with the causes of obstruction, can pave the way for a proper evaluation and appropriate management of nasal airway problems. Lack of understanding can result in misdiagnosis and mismanagement. This article outlines current concepts of medical and surgical management of nasal airway problems and discusses in detail the key concepts and principles in the practical management of the nasal airway.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号