首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   310篇
  免费   26篇
  2023年   1篇
  2022年   8篇
  2021年   6篇
  2020年   5篇
  2019年   5篇
  2018年   12篇
  2017年   5篇
  2016年   10篇
  2015年   30篇
  2014年   27篇
  2013年   28篇
  2012年   24篇
  2011年   35篇
  2010年   21篇
  2009年   18篇
  2008年   15篇
  2007年   16篇
  2006年   18篇
  2005年   10篇
  2004年   8篇
  2003年   10篇
  2002年   5篇
  2001年   2篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1995年   3篇
  1993年   3篇
  1991年   1篇
  1986年   1篇
  1985年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有336条查询结果,搜索用时 15 毫秒
51.
52.
Short‐term lime pretreatment uses lime and high‐pressure oxygen to significantly increase the digestibility of poplar wood. When the treated poplar wood was enzymatically hydrolyzed, glucan and xylan were converted to glucose and xylose, respectively. To calculate product yields from raw biomass, these sugars were expressed as equivalent glucan and xylan. To recommend pretreatment conditions, the single criterion was the maximum overall glucan and xylan yields using a cellulase loading of 15 FPU/g glucan in raw biomass. On this basis, the recommended conditions for short‐term lime pretreatment of poplar wood follow: (1) 2 h, 140°C, 21.7 bar absolute and (2) 2 h, 160°C, and 14.8 bar absolute. In these two cases, the reactivity was nearly identical, thus the selected condition depends on the economic trade off between pressure and temperature. Considering glucose and xylose and their oligomers produced during 72 h of enzymatic hydrolysis, the overall yields attained under these recommended conditions follow: (1) 95.5 g glucan/100 g of glucan in raw biomass and 73.1 g xylan/100 g xylan in raw biomass and (2) 94.2 g glucan/100 g glucan in raw biomass and 73.2 g xylan/100 g xylan in raw biomass. The yields improved by increasing the enzyme loading. An optimal enzyme cocktail was identified as 67% cellulase, 12% β‐glucosidase, and 24% xylanase (mass of protein basis) with cellulase activity of 15 FPU/g glucan in raw biomass and total enzyme loading of 51 mg protein/g glucan in raw biomass. Ball milling the lime‐treated poplar wood allowed for 100% conversion of glucan in 120 h with a cellulase loading of only 10 FPU/g glucan in raw biomass. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   
53.
Many candidate genes have been studied for asthma, but replication has varied. Novel candidate genes have been identified for various complex diseases using genome-wide association studies (GWASs). We conducted a GWAS in 492 Mexican children with asthma, predominantly atopic by skin prick test, and their parents using the Illumina HumanHap 550 K BeadChip to identify novel genetic variation for childhood asthma. The 520,767 autosomal single nucleotide polymorphisms (SNPs) passing quality control were tested for association with childhood asthma using log-linear regression with a log-additive risk model. Eleven of the most significantly associated GWAS SNPs were tested for replication in an independent study of 177 Mexican case–parent trios with childhood-onset asthma and atopy using log-linear analysis. The chromosome 9q21.31 SNP rs2378383 (p = 7.10×10−6 in the GWAS), located upstream of transducin-like enhancer of split 4 (TLE4), gave a p-value of 0.03 and the same direction and magnitude of association in the replication study (combined p = 6.79×10−7). Ancestry analysis on chromosome 9q supported an inverse association between the rs2378383 minor allele (G) and childhood asthma. This work identifies chromosome 9q21.31 as a novel susceptibility locus for childhood asthma in Mexicans. Further, analysis of genome-wide expression data in 51 human tissues from the Novartis Research Foundation showed that median GWAS significance levels for SNPs in genes expressed in the lung differed most significantly from genes not expressed in the lung when compared to 50 other tissues, supporting the biological plausibility of our overall GWAS findings and the multigenic etiology of childhood asthma.  相似文献   
54.
55.
56.

Background

Bartonella henselae is the zoonotic agent of cat scratch disease and causes potentially fatal infections in immunocompromised patients. Understanding the complex interactions between the host''s immune system and bacterial pathogens is central to the field of infectious diseases and to the development of effective diagnostics and vaccines.

Methodology

We report the development of a microarray comprised of proteins expressed from 96% (1433/1493) of the predicted ORFs encoded by the genome of the zoonotic pathogen Bartonella henselae. The array was probed with a collection of 62 uninfected, 62 infected, and 8 “specific-pathogen free” naïve cat sera, to profile the antibody repertoire elicited during natural Bartonella henselae infection.

Conclusions

We found that 7.3% of the B. henselae proteins on the microarray were seroreactive and that seroreactivity was not evenly distributed between predicted protein function or subcellular localization. Membrane proteins were significantly most likely to be seroreactive, although only 23% of the membrane proteins were reactive. Conversely, we found that proteins involved in amino acid transport and metabolism were significantly underrepresented and did not contain any seroreactive antigens. Of all seroreactive antigens, 52 were differentially reactive with sera from infected cats, and 53 were equally reactive with sera from infected and uninfected cats. Thirteen of the seroreactive antigens were found to be differentially seroreactive between B. henselae type I and type II. Based on these results, we developed a classifier algorithm that was capable of accurately discerning 93% of the infected animals using the microarray platform. The seroreactivity and diagnostic potential of these antigens was then validated on an immunostrip platform, which correctly identified 98% of the infected cats. Our protein microarray platform provides a high-throughput, comprehensive analysis of the feline humoral immune response to natural infection with the alpha-proteobacterium B. henselae at an antigen-specific, sera-specific, and genome-wide level. Furthermore, these results provide novel insight and utility in diagnostics, vaccine development, and understanding of host-pathogen interaction.  相似文献   
57.
Calodium hepaticum (syn. Capillaria hepatica) is a nematode of the Capillariidae family that infects rodents and other mammals. In Brazil, human spurious infections of C. hepaticum have been detected in indigenous or rural communities from the Amazon Basin, but not in the southern states of the country. Here, we report the highest occurrence (13.5% of 37 residents) of C. hepaticum human spurious infection detected in Brazil and the first record in a southern region, Guaraqueçaba. The finding is explained by the area being located in the Atlantic Forest of the state of Paraná, surrounded by preserved forests and because the inhabitants consume the meat of wild mammals.  相似文献   
58.
The aim of this work was to assess the significance of the interaction of the 1,3,4-thiadiazolium derivatives MI-J, MI-4F and MI-2,4diF with mitochondrial membrane and their effects on energy-linked functions. Mitochondrial swelling in the absence of substrate was inhibited by all derivatives; however, the fluorine derivatives were most effective. MI-4F decreased swelling by ~32% even at the lowest concentration (65 nmol mg(-1) protein), reaching ~67% at the concentration of 130 nmol mg(-1) protein. Swelling of mitochondria in the presence of oxidizable substrates was also strongly decreased by all derivatives. This effect was more pronounced when using glutamate plus malate, and also fluorine derivatives, which promoted complete inhibition at all concentrations (6.5-130 nmol mg(-1) protein). Swelling occurred when succinate was the substrate in the presence of MI-J (6.5-65 nmol mg(-1) protein); however, the shrinkage rate was strongly decreased. MI-4F and MI-2,4diF also inhibited swelling, with total inhibition occurring at a concentration of 65 nmol mg(-1) protein. Lipid peroxidation induced by Fe(3+)-ADP/2-oxoglutarate in isolated mitochondria was inhibited time- and dose-dependently by the derivatives, reaching complete inhibition at the highest concentration (80 nmol mg(-1) protein). However, when lipid peroxidation was initiated by peroxyl radicals generated from AAPH, the inhibition was less intense, reaching ~50%, ~40% and ~58% with MI-J, MI-4F and MI-2,4diF (80 nmol mg(-1) protein), respectively. The mesoionic compounds also showed superoxide radical scavenging ability of ~22%, ~32% and ~40% (80 nmol mg(-1) protein), respectively. Fluorescence polarization experiments showed that the derivatives are able to enter the bilayer, decreasing its fluidity in the hydrophobic DMPC membrane region and ordering the fluid phase. Our results suggest that MI-J, MI-4F and MI-2,4diF interact significantly, albeit in different modes, with mitochondrial membrane, and that fluorine derivatives seem to alter the membrane's properties more markedly.  相似文献   
59.
Sonic Hedgehog (Shh) is a representative of the evolutionary closely related class of Hedgehog proteins that have essential signaling functions in animal development. The N-terminal domain (ShhN) is also assigned to the group of LAS proteins (LAS = Lysostaphin type enzymes, D-Ala-D-Ala metalloproteases, Sonic Hedgehog), of which all members harbor a structurally well-defined center; however, it is remarkable that ShhN so far is the only LAS member without proven peptidase activity. Another unique feature of ShhN in the LAS group is a double- center close to the zinc. We have studied the effect of these calcium ions on ShhN structure, dynamics, and interactions. We find that the presence of calcium has a marked impact on ShhN properties, with the two calcium ions having different effects. The more strongly bound calcium ion significantly stabilizes the overall structure. Surprisingly, the binding of the second calcium ion switches the putative catalytic center from a state similar to LAS enzymes to a state that probably is catalytically inactive. We describe in detail the mechanics of the switch, including the effect on substrate co-ordinating residues and on the putative catalytic water molecule. The properties of the putative substrate binding site suggest that ShhN could degrade other ShhN molecules, e.g. by cleavage at highly conserved glycines in ShhN. To test experimentally the stability of ShhN against autodegradation, we compare two ShhN mutants in vitro: (1) a ShhN mutant unable to bind calcium but with putative catalytic center intact, and thus, according to our hypothesis, a constitutively active peptidase, and (2) a mutant carrying additionally mutation E177A, i.e., with the putative catalytically active residue knocked out. The in vitro results are consistent with ShhN being a cannibalistic zinc-peptidase. These experiments also reveal that the peptidase activity depends on .  相似文献   
60.
Seagrass shoots interact with hydrodynamic forces and thereby a positively or negatively influence the survival of associated species. The modification of these forces indirectly alters the physical transport and flux of edible particles within seagrass meadows, which will influence the growth and survivorship of associated filter-feeding organisms. The present work contributes to gaining insight into the mechanisms controlling the availability of resources for filter feeders inhabiting seagrass canopies, both from physical (influenced by seagrass density and patchiness) and biological (regulated by filter feeder density) perspectives. A factorial experiment was conducted in a large racetrack flume, which combined changes in hydrodynamic conditions, chlorophyll a concentration in the water and food intake rate (FIR) in a model active filter-feeding organism (the cockle). Results showed that seagrass density and patchiness modified both hydrodynamic forces and availability of resources for filter feeders. Chlorophyll a water content decreased to 50% of the initial value when densities of both seagrass shoots and cockles were high. Also, filter feeder density controlled resource availability within seagrass patches, depending on its spatial position within the racetrack flume. Under high density of filter-feeding organisms, chlorophyll a levels were lower between patches. This suggests that the pumping activity of cockles (i.e. biomixing) is an emergent key factor affecting both resource availability and FIR for filter feeders in dense canopies. Applying our results to natural conditions, we suggest the existence of a direct correlation between habitat complexity (i.e. shoot density and degree of patchiness) and filter feeders density. Fragmented and low-density patches seem to offer both greater protection from hydrodynamic forces and higher resource availability. In denser patches, however, resources are allocated mostly within the canopy, which would benefit filter feeders if they occurred at low densities, but would be limiting when filter feeder were at high densities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号