首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   780篇
  免费   94篇
  2023年   3篇
  2022年   8篇
  2021年   12篇
  2020年   6篇
  2019年   16篇
  2018年   16篇
  2017年   14篇
  2016年   24篇
  2015年   43篇
  2014年   44篇
  2013年   66篇
  2012年   60篇
  2011年   59篇
  2010年   32篇
  2009年   22篇
  2008年   47篇
  2007年   33篇
  2006年   30篇
  2005年   29篇
  2004年   37篇
  2003年   25篇
  2002年   20篇
  2001年   20篇
  2000年   17篇
  1999年   9篇
  1998年   9篇
  1997年   16篇
  1996年   5篇
  1995年   8篇
  1994年   7篇
  1993年   10篇
  1992年   11篇
  1991年   11篇
  1989年   10篇
  1988年   9篇
  1987年   7篇
  1986年   8篇
  1985年   3篇
  1984年   7篇
  1983年   11篇
  1982年   5篇
  1981年   3篇
  1979年   4篇
  1978年   2篇
  1977年   3篇
  1975年   8篇
  1974年   5篇
  1973年   4篇
  1971年   2篇
  1969年   6篇
排序方式: 共有874条查询结果,搜索用时 15 毫秒
101.
Proteomics methodologies hold great promise in basic renal research and clinical nephrology. The classical approach for proteomic analysis couples two-dimensional gel electrophoresis (2-DE) with protein identification by mass spectrometry, to produce more global information regarding normal protein expression and alterations in different physiological and pathological states. In this report we have expanded the identification of proteins in the renal cortex, improving the previously published map to facilitate the study of different diseases affecting the human kidney. About 250 spots were analyzed by peptide mass fingerprinting, 89 proteins and 74 isoforms for some of them were identified and implemented in the normal human renal cortex 2-DE reference map. This more comprehensive view of the proteome of the human renal cortex could be of invaluable help to the differential proteomic display of urological diseases.  相似文献   
102.
In this work, we have determined the thermodynamic parameters of the reduction of four different variants of Thiobacillus versutus amicyanin by electrochemical techniques. In addition, the thermodynamic parameters were determined of the low-pH conformational change involving protonation of the C-terminal histidine ligand and the concomitant dissociation of this histidine from the Cu(I) ion. In these variants, the native C-terminal loop containing the Cys, His, and Met copper ligands has been replaced with the corresponding polypeptide segments of Pseudomonas aeruginosa azurin, Populus nigra plastocyanin, Alcaligenes faecalis S-6 pseudoazurin, and Thiobacillus ferrooxidans rusticyanin. For the reduction reaction, each loop invariably holds an entropic "memory" of the mother protein. The thermodynamics of the low-pH transition vary in a fashion that is species-dependent. When present, the memory effect again shows a large entropic component. In particular, loop elongation tends to favor the formation of the Cu(I)-His bond (hence disfavors His protonation, yielding lower pK(a) values) probably due to an increased flexibility of the loop in the reduced state. Overall, it appears that both reduction and low-pH transition are loop-responsive processes. The spacing between the ligands mostly affects the change in the conformational freedom that accompanies the reaction.  相似文献   
103.
104.
The myogenic factor MyoD induces the expression of the cdk inhibitor p21 to promote cell cycle withdrawal in differentiating myoblasts. Although the cdk inhibitor p57 is also highly expressed in skeletal muscle and is thought to redundantly control myogenesis, little is known about its regulation, that has been suggested to be independent of MyoD. Here we show, for the first time, that MyoD is capable to induce the expression of p57. Intriguingly, this ability is restricted to cells lacking p21, suggesting that the two cdk inhibitors may be expressed in different muscle cell lineages. We also suggest that the functions of p21 and p57 in myoblast cells are only in part redundant. In fact, while the two cdk inhibitors play a similar role in cells undergoing G1 arrest during MyoD-induced differentiation, p57 does not replace p21 in cells escaping G1 arrest and undergoing MyoD-induced apoptosis. This difference can be ascribed both to a different subcellular localization and to a differential ability of the two cdk inhibitors to interact with cell cycle regulators.  相似文献   
105.
A hallmark of autoimmunity and other chronic diseases is the overexpression of chemokines resulting in a detrimental local accumulation of proinflammatory immune cells. Chemokines play a pivotal role in cellular recruitment through interactions with both cell surface receptors and glycosaminoglycans (GAGs). Anti-inflammatory strategies aimed at neutralizing the chemokine system have to-date targeted inhibition of the receptor-ligand interaction with receptor antagonists. In this study, we describe a novel strategy to modulate the inflammatory process in vivo through mutation of the essential heparin-binding site of a proinflammatory chemokine, which abrogates the ability of the protein to form higher-order oligomers, but retains receptor activation. Using well-established protocols to induce inflammatory cell recruitment into the peritoneal cavity, bronchoalveolar air spaces, and CNS in mice, this non-GAG binding variant of RANTES/CCL5 designated [44AANA47]-RANTES demonstrated potent inhibitory capacity. Through a combination of techniques in vitro and in vivo, [44AANA47]-RANTES appears to act as a dominant-negative inhibitor for endogenous RANTES, thereby impairing cellular recruitment, not through a mechanism of desensitization. [44AANA47]-RANTES is unable to form higher-order oligomers (necessary for the biological activity of RANTES in vivo) and importantly forms nonfunctional heterodimers with the parent chemokine, RANTES. Therefore, although retaining receptor-binding capacity, altering the GAG-associated interactive site of a proinflammatory chemokine renders it a dominant-negative inhibitor, suggesting a powerful novel approach to generate disease-modifying anti-inflammatory reagents.  相似文献   
106.
We have employed echistatin, a 5.4 kDa snake venom disintegrin, as a model protein to investigate the paradox that small ligand-mimetics can bind to the resting alphaIIbbeta3 integrin while adhesive macromolecules cannot. We characterized the interactions between purified human alphaIIbbeta3 and two recombinant echistatin variants: rEch (1-49) M28L, chosen for its selectivity toward beta3-integrins, and rEch (1-40) M28L, a carboxy-terminal truncation mutant. While both contain an RGD integrin targeting sequence, only rEch (1-49) M28L was an effective inhibitor of alphaIIbbeta3 function. Electron microscopy of rotary shadowed specimens yielded a variety of alphaIIbbeta3 conformers ranging from compact, spherical particles (maximum dimension 22 nm) to the classical "head with two tails" forms (32 nm). The population of larger particles (42-56 nm) increased from 17% to 28% in the presence of rEch (1-49) M28L, indicative of ligand-induced oligomerization. Sedimentation velocity measurements demonstrated that both full length and truncated echistatin perturbed alphaIIbbeta3's solution structure, yielding slower-sedimenting open conformers. Dynamic light scattering showed that rEch (1-49) M28L protected alphaIIbbeta3 from thermal aggregation, raising its transition mid-point from 46 degrees C to 69 degrees C; a smaller shift resulted with rEch (1-40) M28L. Sedimentation equilibrium demonstrated that both echistatin ligands induced substantial alphaIIbbeta3 dimerization. van't Hoff analysis revealed a pattern of entropy/enthalpy compensation similar to tirofiban, a small RGD ligand-mimetic that binds tightly to alphaIIbbeta3, but yields smaller conformational perturbations than echistatin. We propose that echistatin may serve as a paradigm for understanding multidomain adhesive macromolecules because its ability to modulate alphaIIbbeta3's structure resides on an RGD loop, while full disintegrin activity requires an auxiliary site that includes the carboxy-terminal nine amino acid residues.  相似文献   
107.
Aim of this study was to set up a method by capillary electrophoresis to detect lactulose and mannitol in urine after an oral load, and to estimate the intestinal permeability in controls and in type I diabetes patients. The underivatized carbohydrates were monitored by indirect UV detection using sorbate, cetyltrimethylammonium bromide and LiOH as background electrolyte. Urines were purified by solid phase extraction, shaken with cation exchange resin, filtered and analysed. Carbohydrates migrated in <10 min in relation to their pK(a) and M(r). Controls (n = 33) and patients (n = 23) had an excretion ratio lactulose/mannitol 0.025 (0.018-0.051) and 0.067 (0.050-0.127), respectively (p < 0.01, median, interquartile range).  相似文献   
108.
Novel α-mannosidase inhibitors of the type (2R,3R,4S)-2-({[(1R)-2-hydroxy-1-arylethyl]amino}methyl)pyrrolidine-3,4-diol have been prepared and assayed for their anticancer activities. Compound 30 with the aryl group = 4-trifluoromethylbiphenyl inhibits the proliferation of primary cells and cell lines of different origins, irrespective of Bcl-2 expression levels, inducing a G2/Mcell cycle arrest and by modification of genes involved in cell cycle progression and survival.  相似文献   
109.
Lactoferrin (Lf) is a mammalian exclusive protein widely distributed in milk and exocrine secretions exhibiting multifunctional properties. Many of the proven or proposed functions of Lf, apart from its iron binding activity, depend on its capacity to bind to other macromolecules. Lf can bind and sequester lipopolysaccharide (LPS), thus preventing pro-inflammatory pathway activation, sepsis and tissue damage. However, the interplay between Lf and LPS is complex, and may result in different outcomes, including both suppression of the inflammatory response and immune activation. These findings are critically relevant in the development of Lf-based therapeutic interventions in humans. Understanding the molecular basis and functional consequences of Lf-LPS interaction will provide insights for determining its role in health and disease.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号