首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   984篇
  免费   74篇
  1058篇
  2023年   6篇
  2022年   13篇
  2021年   25篇
  2020年   14篇
  2019年   13篇
  2018年   14篇
  2017年   18篇
  2016年   29篇
  2015年   59篇
  2014年   53篇
  2013年   64篇
  2012年   85篇
  2011年   89篇
  2010年   43篇
  2009年   47篇
  2008年   68篇
  2007年   57篇
  2006年   56篇
  2005年   62篇
  2004年   56篇
  2003年   30篇
  2002年   44篇
  2001年   10篇
  2000年   10篇
  1999年   6篇
  1998年   16篇
  1997年   5篇
  1996年   2篇
  1995年   5篇
  1994年   8篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   4篇
  1988年   1篇
  1987年   5篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1980年   4篇
  1978年   4篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   4篇
  1973年   2篇
  1972年   1篇
  1951年   1篇
  1944年   1篇
排序方式: 共有1058条查询结果,搜索用时 15 毫秒
61.
As the climate warms, species that cannot tolerate changing conditions will only persist if they undergo range shifts. Redistribution ability may be particularly variable for benthic marine species that disperse as pelagic larvae in ocean currents. The blue mussel, Mytilus edulis, has recently experienced a warming-related range contraction in the southeastern USA and may face limitations to northward range shifts within the Gulf of Maine where dominant coastal currents flow southward. Thus, blue mussels might be especially vulnerable to warming, and understanding dispersal patterns is crucial given the species'' relatively long planktonic larval period (>1 month). To determine whether trace elemental “fingerprints” incorporated in mussel shells could be used to identify population sources (i.e. collection locations), we assessed the geographic variation in shell chemistry of blue mussels collected from seven populations between Cape Cod, Massachusetts and northern Maine. Across this ∼500 km of coastline, we were able to successfully predict population sources for over two-thirds of juvenile individuals, with almost 80% of juveniles classified within one site of their collection location and 97% correctly classified to region. These results indicate that significant differences in elemental signatures of mussel shells exist between open-coast sites separated by ∼50 km throughout the Gulf of Maine. Our findings suggest that elemental “fingerprinting” is a promising approach for predicting redistribution potential of the blue mussel, an ecologically and economically important species in the region.  相似文献   
62.
Recycling of receptors from the endosomal recycling compartment to the plasma membrane is a critical cellular process, and recycling is particularly important for maintaining invasiveness in solid tumors. In this work, we continue our efforts to inhibit EHD1, a critical adaptor protein involved in receptor recycling. We applied a diversity-oriented macrocyclization approach to produce cyclic peptides with varied conformations, but that each contain a motif that binds to the EH domain of EHD1. Screening these uncovered several new inhibitors for EHD1’s EH domain, the most potent of which bound with a Kd of 3.1 μM. Several of the most potent inhibitors were tested in a cellular assay that measures extent of vesicle recycling. Inhibiting EHD1 could potentially slow cancer invasiveness and metastasis, and these cyclic peptides represent the most potent inhibitors of EHD1 to date.  相似文献   
63.
Integration of thylakoid proteins by the chloroplast signal recognition particle (cpSRP) posttranslational transport pathway requires the cpSRP, an SRP receptor homologue (cpFtsY), and the membrane protein ALB3. Similarly, Escherichia coli uses an SRP and FtsY to cotranslationally target membrane proteins to the SecYEG translocase, which contains an ALB3 homologue, YidC. In neither system are the interactions between soluble and membrane components well understood. We show that complexes containing cpSRP, cpFtsY, and ALB3 can be precipitated using affinity tags on cpSRP or cpFtsY. Stabilization of this complex with GMP-PNP specifically blocks subsequent integration of substrate (light harvesting chl a/b-binding protein [LHCP]), indicating that the complex occupies functional ALB3 translocation sites. Surprisingly, neither substrate nor cpSRP43, a component of cpSRP, was necessary to form a complex with ALB3. Complexes also contained cpSecY, but its removal did not inhibit ALB3 function. Furthermore, antibody bound to ALB3 prevented ALB3 association with cpSRP and cpFtsY and inhibited LHCP integration suggesting that a complex containing cpSRP, cpFtsY, and ALB3 must form for proper LHCP integration.  相似文献   
64.
Epoxide hydrolases (EHs) of fungal origin have the ability to catalyze the enantioselective hydrolysis of epoxides to their corresponding diols. However, wild type fungal EHs are limited in substrate range and enantioselectivity. Additionally, the production of fungal epoxide hydrolase (EH) by wild-type strains is typically very low. In the present study, the EH-encoding gene from Rhodotorula araucariae was functionally expressed in Yarrowia lipolytica, under the control of a growth phase inducible hp4d promoter, in a multi-copy expression cassette. The transformation experiments yielded a positive transformant, with a final EH activity of 220 U/g dw in shake-flask cultures. Evaluation of this transformant in batch fermentations resulted in ~ 7-fold improvement in EH activity over the flask scale. Different constant specific feed rates were tested in fed-batch fermentations, resulting in an EH activity of 1,750 U/g dw at a specific feed rate of ~ 0.1 g/g/h, in comparison to enzyme production levels of 0.3 U/g dw for the wild type R. araucariae and 52 U/g dw for an Escherichia coli recombinant strain expressing the same gene. The expression of EH in Y. lipolytica using a multi-copy cassette demonstrates potential for commercial application.  相似文献   
65.
In 2006, we reported a mariner (Mos1)-transformed Aedes aegypti line, Carb77, which was highly resistant to dengue-2 virus (DENV2). Carb77 mosquitoes expressed a DENV2-specific inverted-repeat (IR) RNA in midgut epithelial cells after ingesting an infectious bloodmeal. The IR-RNA formed double-stranded DENV2-derived RNA, initiating an intracellular antiviral RNA interference (RNAi) response. However, Carb77 mosquitoes stopped expressing the IR-RNA after 17 generations in culture and lost their DENV2-refractory phenotype. In the current study, we generated new transgenic lines having the identical transgene as Carb77. One of these lines, Carb109M, has been genetically stable and refractory to DENV2 for >33 generations. Southern blot analysis identified two transgene integration sites in Carb109M. Northern blot analysis detected abundant, transient expression of the IR-RNA 24 h after a bloodmeal. Carb109M mosquitoes were refractory to different DENV2 genotypes but not to other DENV serotypes. To further test fitness and stability, we introgressed the Carb109M transgene into a genetically diverse laboratory strain (GDLS) by backcrossing for five generations and selecting individuals expressing the transgene''s EGFP marker in each generation. Comparison of transgene stability in replicate backcross 5 (BC5) lines versus BC1 control lines demonstrated that backcrossing dramatically increased transgene stability. We subjected six BC5 lines to five generations of selection based on EGFP marker expression to increase the frequency of the transgene prior to final family selection. Comparison of the observed transgene frequencies in the six replicate lines relative to expectations from Fisher''s selection model demonstrated lingering fitness costs associated with either the transgene or linked deleterious genes. Although minimal fitness loss (relative to GDLS) was manifest in the final family selection stage, we were able to select homozygotes for the transgene in one family, Carb109M/GDLS.BC5.HZ. This family has been genetically stable and DENV2 refractory for multiple generations. Carb109M/GDLS.BC5.HZ represents an important line for testing proof-of-principle vector population replacement.  相似文献   
66.
In mammalian genomes, the methylation of cytosine residues within CpG dinucleotides is crucial to normal development and cell differentiation. However, methylation of cytosines in the contexts of CpA, CpT, and CpC (non-CpG methylation) has been reported for decades, yet remains poorly understood. In recent years, whole genome bisulphite sequencing (WGBS) has confirmed significant levels of non-CpG methylation in specific tissues and cell types. Non-CpG methylation has several properties that distinguish it from CpG methylation. Here we review the literature describing non-CpG methylation in mammalian cells, describe the important characteristics that distinguish it from CpG methylation, and discuss its functional importance.  相似文献   
67.
Retrotransposition of the budding yeast long terminal repeat retrotransposon Ty3 is activated during mating. In this study, proteins that associate with Ty3 Gag3 capsid protein during virus-like particle (VLP) assembly were identified by mass spectrometry and screened for roles in mating-stimulated retrotransposition. Components of RNA processing bodies including DEAD box helicases Dhh1/DDX6 and Ded1/DDX3, Sm-like protein Lsm1, decapping protein Dcp2, and 5’ to 3’ exonuclease Xrn1 were among the proteins identified. These proteins associated with Ty3 proteins and RNA, and were required for formation of Ty3 VLP retrosome assembly factories and for retrotransposition. Specifically, Dhh1/DDX6 was required for normal levels of Ty3 genomic RNA, and Lsm1 and Xrn1 were required for association of Ty3 protein and RNA into retrosomes. This role for components of RNA processing bodies in promoting VLP assembly and retrotransposition during mating in a yeast that lacks RNA interference, contrasts with roles proposed for orthologous components in animal germ cell ribonucleoprotein granules in turnover and epigenetic suppression of retrotransposon RNAs.  相似文献   
68.
69.
In an endeavor to develop efficacious antiprotozoal agents 4-(7-chloroquinolin-4-yl) piperazin-1-yl)pyrrolidin-2-yl)methanone derivatives (514) were synthesized, characterized and biologically evaluated for antiprotozoal activity. The compounds were screened in vitro against the HM1: IMSS strain of Entamoeba histolytica and NF54 chloroquine-sensitive strain of Plasmodium falciparum. Among the synthesized compounds six exhibited promising antiamoebic activity with IC50 values (0.14–1.26 μM) lower than the standard drug metronidazole (IC50 1.80 μM). All nine compounds exhibited antimalarial activity (IC50 range: 1.42–19.62 μM), while maintaining a favorable safety profile to host red blood cells. All the compounds were less effective as an antimalarial and more toxic (IC50 range: 14.67–81.24 μM) than quinine (IC50: 275.6 ± 16.46 μM) against the human kidney epithelial cells. None of the compounds exhibited any inhibitory effect on the viability of Anopheles arabiensis mosquito larvae.  相似文献   
70.
Parasitic nematodes cause a massive worldwide burden on human health along with a loss of livestock and agriculture productivity. Anthelmintics have been widely successful in treating parasitic nematodes. However, resistance is increasing, and little is known about the molecular and genetic causes of resistance for most of these drugs. The free-living roundworm Caenorhabditis elegans provides a tractable model to identify genes that underlie resistance. Unlike parasitic nematodes, C. elegans is easy to maintain in the laboratory, has a complete and well annotated genome, and has many genetic tools. Using a combination of wild isolates and a panel of recombinant inbred lines constructed from crosses of two genetically and phenotypically divergent strains, we identified three genomic regions on chromosome V that underlie natural differences in response to the macrocyclic lactone (ML) abamectin. One locus was identified previously and encodes an alpha subunit of a glutamate-gated chloride channel (glc-1). Here, we validate and narrow two novel loci using near-isogenic lines. Additionally, we generate a list of prioritized candidate genes identified in C. elegans and in the parasite Haemonchus contortus by comparison of ML resistance loci. These genes could represent previously unidentified resistance genes shared across nematode species and should be evaluated in the future. Our work highlights the advantages of using C. elegans as a model to better understand ML resistance in parasitic nematodes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号