首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2731篇
  免费   304篇
  国内免费   2篇
  2023年   11篇
  2022年   25篇
  2021年   72篇
  2020年   56篇
  2019年   67篇
  2018年   65篇
  2017年   57篇
  2016年   93篇
  2015年   141篇
  2014年   165篇
  2013年   184篇
  2012年   245篇
  2011年   240篇
  2010年   124篇
  2009年   120篇
  2008年   153篇
  2007年   162篇
  2006年   145篇
  2005年   145篇
  2004年   136篇
  2003年   113篇
  2002年   109篇
  2001年   34篇
  2000年   22篇
  1999年   30篇
  1998年   34篇
  1997年   16篇
  1996年   15篇
  1995年   13篇
  1994年   7篇
  1993年   9篇
  1992年   15篇
  1991年   15篇
  1990年   13篇
  1989年   7篇
  1988年   13篇
  1987年   9篇
  1986年   10篇
  1985年   6篇
  1984年   11篇
  1983年   6篇
  1980年   7篇
  1979年   8篇
  1977年   7篇
  1972年   7篇
  1971年   8篇
  1969年   7篇
  1934年   6篇
  1924年   7篇
  1922年   5篇
排序方式: 共有3037条查询结果,搜索用时 265 毫秒
151.
152.
153.
Salmonella invades mammalian cells by inducing membrane ruffling and macropinocytosis through actin remodelling. Because phosphoinositides are central to actin assembly, we have studied the dynamics of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)) in HeLa cells during invasion by Salmonella typhimurium. Here we show that the outermost parts of the ruffles induced by invasion show a modest enrichment in PtdIns(4,5)P(2), but that PtdIns(4,5)P(2) is virtually absent from the invaginating regions. Rapid disappearance of PtdIns(4,5)P(2) requires the expression of the Salmonella phosphatase SigD (also known as SopB). Deletion of SigD markedly delays fission of the invaginating membranes, indicating that elimination of PtdIns(4,5)P(2) may be required for rapid formation of Salmonella-containing vacuoles. Heterologous expression of SigD is sufficient to promote the disappearance of PtdIns(4,5)P(2), to reduce the rigidity of the membrane skeleton, and to induce plasmalemmal invagination and fission. Hydrolysis of PtdIns(4,5)P(2) may be a common and essential feature of membrane fission during several internalization processes including invasion, phagocytosis and possibly endocytosis.  相似文献   
154.
We have generated an artificial highly specific endonuclease by fusing domains of homing endonucleases I-DmoI and I-CreI and creating a new 1400 A(2) protein interface between these domains. Protein engineering was accomplished by combining computational redesign and an in vivo protein-folding screen. The resulting enzyme, E-DreI (Engineered I-DmoI/I-CreI), binds a long chimeric DNA target site with nanomolar affinity, cleaving it precisely at a rate equivalent to its natural parents. The structure of an E-DreI/DNA complex demonstrates the accuracy of the protein interface redesign algorithm and reveals how catalytic function is maintained during the creation of the new endonuclease. These results indicate that it may be possible to generate novel highly specific DNA binding proteins from homing endonucleases.  相似文献   
155.
156.
Type III secretion systems (TTSS) are used by Gram-negative pathogens to translocate proteins into eukaryotic host cells. Salmonella enterica serovar Typhimurium (S. Typhimurium) has two of these specialized systems, which are encoded on separate Salmonella pathogenicity islands (SPI-1 and SPI-2) and translocate unique sets of effectors. The specific roles of these systems in Salmonella pathogenesis remain undefined, although SPI-1 is required for bacterial invasion of epithelial cells and SPI-2 for survival/replication in phagocytic cells. However, because SPI-1 TTSS mutants are invasion-incompetent, the role of this TTSS in post-invasion processes has not been investigated. In this study, we have used two distinct methods to internalize a non-invasive SPI-1 TTSS mutant (invA) into cultured epithelial cells: (i) co-internalization with wild-type S. Typhimurium (SPI-1-dependent) and (ii) complementation with the Yersinia pseudotuberculosis invasin (inv) gene (SPI-1-independent). In both cases, internalized invA mutants were unable to replicate intracellularly, indicating that SPI-1 effectors are essential for this process and cannot be complemented by wild-type bacteria in the same cell. Analysis of the biogenesis of SCVs showed that vacuoles containing mutant bacteria displayed abnormal maturation that was dependent on the mechanism of entry. Manipulation of Salmonella-containing vacuole (SCV) biogenesis by pharmacologically perturbing membrane trafficking in the host cell increased intracellular replication of wild-type but not mutant S. Typhimurium This demonstrates a previously unknown role for SPI-1 in vacuole biogenesis and intracellular survival in non-phagocytic cells.  相似文献   
157.
Starvation induces many biochemical and histological changes in the heart; however, the molecular events underlying these changes have not been fully elucidated. To explore the molecular response of the heart to starvation, microarray analysis was performed together with biochemical and histological investigations. Serum free fatty acids increased twofold in both 16- and 48-h-fasted mice, and cardiac triglyceride content increased threefold and sixfold in 16- and 48-h-fasted mice, respectively. Electron microscopy showed numerous lipid droplets in hearts of 48-h-fasted mice, whereas fewer numbers of droplets were seen in hearts from 16-h-fasted mice. Expression of 11,000 cardiac genes was screened by microarrays. More than 50 and 150 known genes were detected by differential expression analysis after 16- and 48-h-fasts, respectively. Genes for fatty acid oxidation and gluconeogenesis were increased, and genes for glycolysis were decreased. Many other genes for metabolism, signaling/cell cycle, cytoskeleton, and tissue antigens were affected by fasting. These data provide a broad perspective of the molecular events occurring physiologically in the heart in response to starvation.  相似文献   
158.
Aspects of metabolic regulation can be fruitfully studied with a combination of generic modelling, control analysis and graphical analysis using rate characteristics. This paper analyses a prototypical supply-demand system consisting of a biosynthetic subsystem subject to allosteric inhibition by its product and a demand process that consumes this product. The effect of changes in affinity of the committing supply enzyme for the pathway substrate on the regulatory properties of the supply subsystem is compared for the Monod-Wyman-Changeux and the reversible Hill allosteric enzyme models. We found that the Hill model has a distinct advantage in that the steady-state concentration at which it maintains the product is set by the half-saturating product concentration and is independent of changes in the degree of saturation for substrate. In contrast, with the Monod-Wyman-Changeux model this set point varies with affinity for substrate. Explicitly incorporating reversibility in all rate equations made it possible to distinguish between kinetic and thermodynamic aspects of regulation. Combining the supply and demand rate characteristics allows us to explore both the control distribution at steady state and the regulatory performance of the system over a wide range of demand activities.  相似文献   
159.
Mutations altering the cleavage specificity of a homing endonuclease   总被引:10,自引:9,他引:1       下载免费PDF全文
The homing endonuclease I-CreI recognizes and cleaves a particular 22 bp DNA sequence. The crystal structure of I-CreI bound to homing site DNA has previously been determined, leading to a number of predictions about specific protein–DNA contacts. We test these predictions by analyzing a set of endonuclease mutants and a complementary set of homing site mutants. We find evidence that all structurally predicted I-CreI/DNA contacts contribute to DNA recognition and show that these contacts differ greatly in terms of their relative importance. We also describe the isolation of a collection of altered specificity I-CreI derivatives. The in vitro DNA-binding and cleavage properties of two such endonucleases demonstrate that our genetic approach is effective in identifying homing endonucleases that recognize and cleave novel target sequences.  相似文献   
160.
Ca(2+) influx through L-type channels is critical for numerous physiological functions. Relatively little is known about modulation of neuronal L-type Ca(2+) channels. We studied modulation of neuronal Ca(V)1.2c channels heterologously expressed in HEK293 cells with each of the known muscarinic acetylcholine receptor subtypes. Galphaq/11-coupled M1, M3, and M5 receptors each produced robust inhibition of Ca(V)1.2c, whereas Galphai/o-coupled M2 and M4 receptors were ineffective. Channel inhibition through M1 receptors was studied in detail and was found to be kinetically slow, voltage-independent, and pertussis toxin-insensitive. Slow inhibition of Ca(V)1.2c was blocked by coexpressing RGS2 or RGS3T or by intracellular dialysis with antibodies directed against Galphaq/11. In contrast, inhibition was not reduced by coexpressing betaARK1ct or Galphat. These results indicate that slow inhibition required signaling by Galphaq/11, but not Gbetagamma, subunits. Slow inhibition did not require Ca(2+) transients or Ca(2+) influx through Ca(V)1.2c channels. Additionally, slow inhibition was insensitive to pharmacological inhibitors of phospholipases, protein kinases, and protein phosphatases. Intracellular BAPTA prevented slow inhibition via a mechanism other than Ca(2+) chelation. The cardiac splice-variant of Ca(V)1.2 (Ca(V)1.2a) and a splice-variant of the neuronal/neuroendocrine Ca(V)1.3 channel also appeared to undergo slow muscarinic inhibition. Thus, slow muscarinic inhibition may be a general characteristic of L-type channels having widespread physiological significance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号