首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2731篇
  免费   304篇
  国内免费   2篇
  2023年   11篇
  2022年   25篇
  2021年   72篇
  2020年   56篇
  2019年   67篇
  2018年   65篇
  2017年   57篇
  2016年   93篇
  2015年   141篇
  2014年   165篇
  2013年   184篇
  2012年   245篇
  2011年   240篇
  2010年   124篇
  2009年   120篇
  2008年   153篇
  2007年   162篇
  2006年   145篇
  2005年   145篇
  2004年   136篇
  2003年   113篇
  2002年   109篇
  2001年   34篇
  2000年   22篇
  1999年   30篇
  1998年   34篇
  1997年   16篇
  1996年   15篇
  1995年   13篇
  1994年   7篇
  1993年   9篇
  1992年   15篇
  1991年   15篇
  1990年   13篇
  1989年   7篇
  1988年   13篇
  1987年   9篇
  1986年   10篇
  1985年   6篇
  1984年   11篇
  1983年   6篇
  1980年   7篇
  1979年   8篇
  1977年   7篇
  1972年   7篇
  1971年   8篇
  1969年   7篇
  1934年   6篇
  1924年   7篇
  1922年   5篇
排序方式: 共有3037条查询结果,搜索用时 15 毫秒
121.
Myocardial ischemia during cardiopulmonary bypass terminated by reperfusion generally leads to different degrees of damage of the cardiomyocytes induced by transient cytosolic Ca(2+) overload. Recently, much attention has been paid to the role of heart-specific Ca(2+)-binding proteins in the pathogenesis of myocardial ischemia-reperfusion injury. S100A1 is a heart-specific EF-hand Ca(2+)-binding protein that is directly involved in a variety of Ca(2+)-mediated functions in myocytes. The aim of our study was to investigate the localization and translocation of S100A1 in the human heart under normal (baseline) conditions and after prolonged ischemia and reperfusion of the myocardium. Our data suggest that S100A1 is directly involved in the transient perioperative myocardial damage caused by ischemia during open heart surgery in humans. Given its role in the contractile function of muscle cells, this S100 protein could be an important "intracellular link" in ischemia-reperfusion injury of the heart.  相似文献   
122.
Multiple enhancers govern developmental and tissue-specific expression of the H19-Igf2 locus, but factors that bind these elements have not been identified. Using chromatin immunoprecipitation, we have found two FoxA binding sites in the H19 E1 enhancer. Mutating these sites diminishes E1 activity in hepatoma cells. Additional chromatin immunoprecipitations show that FoxA binds to E1 in fetal liver, where H19 is abundantly expressed, but that binding decreases in adult liver, where H19 is no longer transcribed, even though FoxA proteins are present at both times. FoxA proteins are induced when F9 embryonal carcinoma cells differentiate into visceral endoderm (VE) and parietal endoderm (PE). We show that FoxA binds E1 in VE cells, where H19 is expressed, but not in PE cells, where H19 is silent. This correlation between FoxA binding and H19 expression indicates a role for FoxA in regulating H19, including developmental activation in the yolk sac and liver and postnatal repression in the liver. This is the first demonstration of a tissue-specific factor involved in developmental control of H19 expression. These data also indicate that the presence of FoxA proteins is not sufficient for binding but that additional mechanisms must govern the accessibility of FoxA proteins to their cognate binding sites within the H19 E1 enhancer.  相似文献   
123.
124.
Salmonella resides within host cells in a vacuole that it modifies through the action of virulence proteins called effectors. Here we examined the role of two related effectors, SopD and SopD2, in Salmonella pathogenesis. Salmonella enterica serovar Typhimurium (S. Typhimurium) mutants lacking either sopD or sopD2 were attenuated for replication in the spleens of infected mice when competed against wild-type bacteria in mixed infection experiments. A double mutant lacking both effector genes did not display an additive attenuation of virulence in these experiments. The double mutant also competed equally with both of the single mutants. Deletion of either effector impaired bacterial replication in mouse macrophages but not human epithelial cells. Deletion of sopD2 impaired Salmonella's ability to form tubular membrane filaments [Salmonella-induced filaments (Sifs)] in infected cells; the number of Sifs decreased, whereas the number of pseudo-Sifs (thought to be a precursor of Sifs) was increased. Transfection of HeLa cells with the effector SifA induced the formation of Sif-like tubules and these were observed in greater size and number after co-transfection of SifA with SopD2. In infected cells, SifA and SopD2 were localized both to Sifs and to pseudo-Sifs. In contrast, deletion of sopD had no effect on Sif formation. Our results indicate that both SopD and SopD2 contribute to virulence in mice and suggest a functional relationship between these two proteins during systemic infection of the host.  相似文献   
125.
The first and most important step in the development and manufacture of a sensitive DNA-biosensor for hybridization detection is the immobilization procedure of the nucleic acid probe on the transducer surface, maintaining its mobility and conformational flexibility. MAC Mode AFM images were used to demonstrate that oligonucleotide (ODN) molecules adsorb spontaneously at the electrode surface. After adsorption, the ODN layers were formed by molecules with restricted mobility, as well as by superposed molecules, which can lead to reduced hybridization efficiency. The images also showed the existence of pores in the adsorbed ODN film that revealed large parts of the electrode surface, and enabled non-specific adsorption of other ODNs on the uncovered areas. Electrostatic immobilization onto a clean glassy carbon electrode surface was followed by hybridization with complementary sequences and by control experiments with non-complementary sequences, studied using differential pulse voltammetry. The data obtained showed that non-specific adsorption strongly influenced the results, which depended on the sequence of the ODNs. In order to reduce the contribution of non-specific adsorbed ODNs during hybridization experiments, the carbon electrode surface was modified. After modification, the AFM images showed an electrode completely covered by the ODN probe film, which prevented the undesirable binding of target ODN molecules to the electrode surface. The changes of interfacial capacitance that took place after hybridization or control experiments showed the formation of a mixed multilayer that strongly depended on the local environment of the immobilized ODN.  相似文献   
126.
We summarise the contributions of empiricists, modellers, and practitioners in this issue of Biodiversity and Conservation, and highlight the most important areas for future research on species survival in fragmented landscapes. Under the theme uncertainty in research and management, we highlight five areas for future research. First, we know little about the effects of density dependence on the viability of metapopulations, a requirement for fragmented landscapes. Second, successful early attempts suggest that it is worth developing more rigorous calibration methods for population viability analysis with spatially explicit, individual-based models. In particular, the balance between model complexity, ease of calibration, and precision, needs to be addressed. Third, we need to improve methods to discriminate between models, including alternatives to time-series approaches. Fourth, when our ability to reduce model uncertainty is weak, we need to incorporate this uncertainty in population viability analysis. Fifth, population viability analysis and decision analysis can be integrated to make uncertainty an explicit part of the decision process. An important future direction is extending the decision framework to adaptive management. Under the theme tools for quantifying risk and predicting species sensitivity to fragmentation, we highlight three areas for future research. First, we need to develop tools to support comparative approaches to population viability analysis. Second, population modelling can be used to find rules of thumb to support conservation decisions when very little is known about a species. Rules of thumb need to be extended to the problem of managing for multiple species. Third, species traits might be useful for predicting sensitivity but predictions could be further refined by considering the relative importance of population processes at different scales. Under the theme tools for reassembling fragmented landscapes, we consider the focal species approach, and highlight aspects of the approach that require more rigorous testing. Finally, we highlight two important areas for future research not presented in the previous themes or papers in this volume. First, we need to incorporate the deterministic effects of habitat modification into the modelling framework of population viability analysis. Second, an avenue of research that remains largely unexplored is the combination of landscape-scale experiments and population modelling, especially using data from existing fragmentation experiments and from experiments designed to test the effects of defragmenting landscapes.  相似文献   
127.
128.
The Salmonella effector protein SigD is an inositol phosphate phosphatase that inhibits phosphatidylinositol 3-kinase-dependent signaling. Because epidermal growth factor (EGF) inhibits chloride secretion via phosphatidylinositol 3-kinase, we explored whether Salmonella infection might modify the inhibitory effect of EGF. As expected, EGF inhibited chloride secretion induced by carbachol in T84 epithelial cells. Infection with wild-type (WT) but not sigD mutant S. typhimurium SL1344 decreased CCh-stimulated chloride secretion. Moreover, WT but not sigD Salmonella reduced the inhibitory effect of EGF on carbachol-stimulated chloride secretion. Complementation of sigD restored the ability of mutant Salmonella to reverse the inhibitory effect of EGF. EGF-induced EGF receptor phosphorylation was similar in cells infected with either WT or mutant Salmonella, and neither WT nor sigD Salmonella altered recruitment of the p85 subunit of phosphatidylinositol 3-kinase to EGF receptor, implying that SigD acts downstream of these signaling events. Furthermore, transepithelial resistance fell more rapidly in cells infected with WT vs. sigD Salmonella, indicating an early role for SigD in reducing barrier function, perhaps via activation of protein kinase C. We conclude that the Salmonella bacterial effector protein SigD may play critical roles in the pathogenesis of disease caused by this microorganism. chloride secretion; Salmonella typhimurium; epidermal growth factor  相似文献   
129.
This study examined whether, and by what signaling and ionic mechanisms, pyrimidine nucleotides constrict rat cerebral arteries. Cannulated cerebral arteries stripped of endothelium and pressurized to 15 mmHg constricted in a dose-dependent manner to UTP. This constriction was partly dependent on the depolarization of smooth muscle cells and the activation of voltage-operated Ca(2+) channels. The depolarization and constriction induced by UTP were unaffected by bisindolylmaleimide I, a PKC inhibitor that abolished phorbol ester (PMA)-induced constriction in cerebral arteries. In contrast, the Rhokinase inhibitor Y-27632 attenuated the ability of UTP to both constrict and depolarize cerebral arteries. With patch-clamp electrophysiology, a voltage-dependent delayed rectifying K(+) (K(DR)) current was isolated and shown to consist of a slowly inactivating 4-aminopyridine (4-AP)-sensitive and an -insensitive component. The 4-AP-sensitive K(DR) current was potently suppressed by UTP through a mechanism that was not dependent on PKC. This reflects observations that demonstrated that 1) a PKC activator (PMA) had no effect on K(DR) and 2) PKC inhibitors (calphostin C or bisindolylmaleimide I) could not prevent the suppression of K(DR) by UTP. The Rho kinase inhibitor Y-27632 abolished the ability of UTP to inhibit the K(DR) current, as did inhibition of RhoA with C3 exoenzyme. Cumulatively, these observations indicate that Rho kinase signaling plays an important role in eliciting the cerebral constriction induced by pyrimidine nucleotides. Moreover, they demonstrate for the first time that Rhokinase partly mediates this constriction by altering ion channels that control membrane potential and Ca(2+) influx through voltage-operated Ca(2+) channels.  相似文献   
130.
The sporophyte of the fern Pteris vittata is known to hyperaccumulate arsenic (As) in its fronds to >1% of its dry weight. Hyperaccumulation of As by plants has been identified as a valuable trait for the development of a practical phytoremediation processes for removal of this potentially toxic trace element from the environment. However, because the sporophyte of P. vittata is a slow growing perennial plant, with a large genome and no developed genetics tools, it is not ideal for investigations into the basic mechanisms underlying As hyperaccumulation in plants. However, like other homosporous ferns, P. vittata produces and releases abundant haploid spores from the parent sporophyte plant which upon germination develop as free-living, autotrophic haploid gametophyte consisting of a small (<1 mm) single-layered sheet of cells. Its small size, rapid growth rate, ease of culture, and haploid genome make the gametophyte a potentially ideal system for the application of both forward and reverse genetics for the study of As hyperaccumulation. Here we report that gametophytes of P. vittata hyperaccumulate As in a similar manner to that previously observed in the sporophyte. Gametophytes are able to grow normally in medium containing 20 mm arsenate and accumulate >2.5% of their dry weight as As. This contrasts with gametophytes of the related nonaccumulating fern Ceratopteris richardii, which die at even low (0.1 mm) As concentrations. Interestingly, gametophytes of the related As accumulator Pityrogramma calomelanos appear to tolerate and accumulate As to intermediate levels compared to P. vittata and C. richardii. Analysis of gametophyte populations from 40 different P. vittata sporophyte plants collected at different sites in Florida also revealed the existence of natural variability in As tolerance but not accumulation. Such observations should open the door to the application of new and powerful genetic tools for the dissection of the molecular mechanisms involved in As hyperaccumulation in P. vittata using gametophytes as an easily manipulated model system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号