首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5498篇
  免费   458篇
  国内免费   3篇
  5959篇
  2023年   33篇
  2022年   56篇
  2021年   106篇
  2020年   75篇
  2019年   87篇
  2018年   108篇
  2017年   97篇
  2016年   145篇
  2015年   238篇
  2014年   248篇
  2013年   313篇
  2012年   411篇
  2011年   381篇
  2010年   299篇
  2009年   235篇
  2008年   343篇
  2007年   321篇
  2006年   282篇
  2005年   308篇
  2004年   249篇
  2003年   226篇
  2002年   239篇
  2001年   83篇
  2000年   51篇
  1999年   64篇
  1998年   81篇
  1997年   52篇
  1996年   67篇
  1995年   48篇
  1994年   45篇
  1993年   48篇
  1992年   46篇
  1991年   43篇
  1990年   30篇
  1989年   26篇
  1988年   32篇
  1987年   35篇
  1986年   19篇
  1985年   41篇
  1984年   27篇
  1983年   25篇
  1982年   29篇
  1981年   21篇
  1980年   28篇
  1979年   18篇
  1978年   16篇
  1977年   20篇
  1976年   22篇
  1974年   16篇
  1973年   21篇
排序方式: 共有5959条查询结果,搜索用时 15 毫秒
41.
42.
Epstein-Barr virus (EBV) is tightly associated with certain human cancers, but there is as yet no specific treatment against EBV-related diseases. The EBV-encoded EBNA1 protein is essential to maintain viral episomes and for viral persistence. As such, EBNA1 is expressed in all EBV-infected cells, and is highly antigenic. All infected individuals, including individuals with cancer, have CD8+ T cells directed towards EBNA1 epitopes, yet the immune system fails to detect and destroy cells harboring the virus. EBV immune evasion depends on the capacity of the Gly-Ala repeat (GAr) domain of EBNA1 to inhibit the translation of its own mRNA in cis, thereby limiting the production of EBNA1-derived antigenic peptides presented by the major histocompatibility complex (MHC) class I pathway. Here we establish a yeast-based assay for monitoring GAr-dependent inhibition of translation. Using this assay we identify doxorubicin (DXR) as a compound that specifically interferes with the GAr effect on translation in yeast. DXR targets the topoisomerase-II–DNA complexes and thereby causes genomic damage. We show, however, that the genotoxic effect of DXR and various analogs thereof is uncoupled from the effect on GAr-mediated translation control. This is further supported by the observation that etoposide and teniposide, representing another class of topoisomerase-II–DNA targeting drugs, have no effect on GAr-mediated translation control. DXR and active analogs stimulate, in a GAr-dependent manner, EBNA1 expression in mammalian cells and overcome GAr-dependent restriction of MHC class I antigen presentation. These results validate our approach as an effective high-throughput screening assay to identify drugs that interfere with EBV immune evasion and, thus, constitute candidates for treating EBV-related diseases, in particular EBV-associated cancers.KEY WORDS: EBV-associated cancers, Cell-based drug screening, EBNA1 GAr domain, Yeast-based models, Immune evasion, Doxorubicin, Daunorubicin, 5-fluorouracil  相似文献   
43.
Histone deacetylases (HDAC’s) became increasingly important targets for therapy of various diseases, resulting in a pressing need to develop HDAC class- and isoform-selective inhibitors. Class IIa deacetylases possess only minimal deacetylase activity against acetylated histones, but have several other client proteins as substrates through which they participate in epigenetic regulation. Herein, we report the radiosyntheses of the second generation of HDAC class IIa–specific radiotracers: 6-(di-fluoroacetamido)-1-hexanoicanilide (DFAHA) and 6-(tri-fluoroacetamido)-1-hexanoicanilide ([18F]-TFAHA). The selectivity of these radiotracer substrates to HDAC class IIa enzymes was assessed in vitro, in a panel of recombinant HDACs, and in vivo using PET/CT imaging in rats. [18F]TFAHA showed significantly higher selectivity for HDAC class IIa enzymes, as compared to [18F]DFAHA and previously reported [18F]FAHA. PET imaging with [18F]TFAHA can be used to visualize and quantify spatial distribution and magnitude of HDAC class IIa expression-activity in different organs and tissues in vivo. Furthermore, PET imaging with [18F]TFAHA may advance the understanding of HDACs class IIa mediated epigenetic regulation of normal and pathophysiological processes, and facilitate the development of novel HDAC class IIa-specific inhibitors for therapy of different diseases.  相似文献   
44.
The Distributed Annotation System   总被引:1,自引:0,他引:1  

Background  

Currently, most genome annotation is curated by centralized groups with limited resources. Efforts to share annotations transparently among multiple groups have not yet been satisfactory.  相似文献   
45.
46.
Amrinone is a bipyridine compound with characteristic effects on the force-velocity relationship of fast skeletal muscle, including a reduction in the maximum shortening velocity and increased maximum isometric force. Here we performed experiments to elucidate the molecular mechanisms for these effects, with the additional aim to gain insight into the molecular mechanisms underlying the force-velocity relationship. In vitro motility assays established that amrinone reduces the sliding velocity of heavy meromyosin-propelled actin filaments by 30% at different ionic strengths of the assay solution. Stopped-flow studies of myofibrils, heavy meromyosin and myosin subfragment 1, showed that the effects on sliding speed were not because of a reduced rate of ATP-induced actomyosin dissociation because the rate of this process was increased by amrinone. Moreover, optical tweezers studies could not detect any amrinone-induced changes in the working stroke length. In contrast, the ADP affinity of acto-heavy meromyosin was increased about 2-fold by 1 mm amrinone. Similar effects were not observed for acto-subfragment 1. Together with the other findings, this suggests that the amrinone-induced reduction in sliding velocity is attributed to inhibition of a strain-dependent ADP release step. Modeling results show that such an effect may account for the amrinone-induced changes of the force-velocity relationship. The data emphasize the importance of the rate of a strain-dependent ADP release step in influencing the maximum sliding velocity in fast skeletal muscle. The data also lead us to discuss the possible importance of cooperative interactions between the two myosin heads in muscle contraction.Muscle contraction, as well as several other aspects of cell motility, results from cyclic interactions between myosin II motors and actin filaments. These force-generating interactions are driven by the hydrolysis of ATP at the myosin active site as outlined in Scheme 1 (13). In the absence of actin, the Pi and ADP release steps (k4 and k5) are rate-limiting for the entire cycle at high (>12 °C) and low temperatures, respectively (46). In the presence of actin, the rate of Pi release increases significantly, and the overall cycle is accelerated more than 2 orders of magnitude. The sliding velocity of myosin-propelled motors is generally believed to be rate-limited by actomyosin dissociation (rate constant k5, k6, or k2 in Scheme 1) (7). Alternatively, some studies (8, 9) have suggested that the sliding velocity is determined by the fraction of myosin heads in the weak-binding states, AM4 ATP and AM ADP Pi. However, it is worth emphasizing that KT is very low under physiological conditions (1, 3) with low population of these states. For the same reason, the rate of dissociation of the AM complex is governed by K1 and k2.Open in a separate windowSCHEME 1.Simplified kinetics scheme for MgATP turnover by myosin (lower row) and actomyosin (upper row). Inorganic phosphate is denoted by Pi; MgATP is denoted by ATP, and MgADP is denoted by ADP; myosin is denoted by M. The states AM*ADP and AM ADP correspond to myosin heads with their nucleotide binding pocket in a partially closed and open conformation, respectively (7, 52). Rate constants are indicated by lowercase letters (rightward transitions, k2k5 and k2k5, or leftward transitions, k−2k−5 and k−2k−5) and equilibrium constants by uppercase letters (K1, K1, KT, K3, K3, K6, k6, and KDP). The equilibrium constants are association constants except for simple bimolecular reactions where they are defined as ki/ki.For the study of contractile mechanisms in both muscle and other types of cells, drugs may be useful as pharmacological tools affecting different transitions or states in the force-generating cycle. Whereas the use of drugs as tools may be less specific than site-directed mutagenesis, it also has advantages. The motor protein function may be studied in vivo, with maintained ordering of the protein components, e.g. as in the muscle sarcomere, allowing more insight into the relationship between specific molecular events and contractile properties of muscle. A drug that has been used quite extensively in this context is butanedione monoxime. The usefulness of this drug is based on firm characterization of its effect on actomyosin function on the molecular level (3, 1013). More recently other drugs, like N-benzyl-p-toluene sulfonamide (14, 15) and blebbistatin (16), have been found to affect myosin function, and their effects at the molecular level have also been elucidated in some detail (14, 15, 17, 18). Both these drugs appear to affect the actomyosin interaction in a similar way as butanedione monoxime by inhibiting a step before (or very early in) the myosin power stroke, leading to the inhibition of actomyosin cross-bridge formation and force production.In contrast to the reduced isometric force, caused by the above mentioned drugs, the bipyridine compound amrinone (Fig. 1A) has been found to increase the isometric force production of fast intact skeletal muscles of the frog (19, 20) and mouse (21) and also of fast (but much less slow) skinned muscle fibers of the rat (22). In all the fast myosin preparations, the effect of about 1 mm amrinone on isometric force was associated with characteristic changes of the force-velocity relationship (Fig. 1B), including a reduced maximum velocity of shortening (1922) and a reduced curvature of the force-velocity relationship (1922). The latter effect was accompanied (20, 21) by a less pronounced deviation of the force-velocity relationship from the hyperbolic shape (23) at high loads. There have been different interpretations of the drug effects. It has been proposed (2022) that amrinone might competitively inhibit the MgATP binding by myosin. However, more recently, results from in vitro motility assay experiments (24) challenged this idea. These results showed that amrinone reduces the sliding velocity (Vmax) at saturating MgATP concentrations but not at MgATP concentrations close to, or below, the Km value for the hyperbolic relationship between MgATP concentration and sliding velocity. Such a combination of effects is consistent with a reduced MgADP release rate (24) but not with competitive inhibition of substrate binding. However, effects of amrinone on the MgADP release rate have not been directly demonstrated. Additionally, in view of the uncertainty about what step actually determines the sliding velocity at saturating [MgATP] (see above and Refs. 79), it is of interest to consider other possible drug effects that could account for the data of Klinth et al. (24). These include the following: 1) an increased drag force, e.g. because of enhancement of weak actomyosin interactions; 2) a reduced step length; and 3) effects of the drug on the rate of MgATP-induced dissociation of actomyosin.Open in a separate windowFIGURE 1.A, structure of amrinone. B, experimental force-velocity data obtained in the presence (filled symbols) and absence (open symbols) of 1.1 mm amrinone. The data, from intact single frog muscle fibers, were obtained at 2 °C and fitted by Hill''s (42) hyperbola (lines) for data truncated at 80% of the maximum isometric force. Filled line, equation fitted to control data, a/P0* = 0.185; P0*/P0 = 1.196. Dashed line, amrinone, a/P0* = 0.347; P0*/P0 = 1.009. Force-velocity data were obtained in collaboration with Professor K. A. P. Edman. Same data as in Fig. 8 of Ref. 20. Note a decrease in maximum sliding velocity and curvature of the force-velocity relationship at low force, in response to amrinone. Also note that amrinone caused increased isometric force and a reduced deviation of the force-velocity relationship from the Hill''s hyperbola at high force. All changes of the force-velocity relationship were statistically significant (20), and similar changes were later also observed in intact mouse muscle and skinned rat muscle fibers. Data in Fig. 1 are published by agreement with Professor K. A. P. Edman.To differentiate between these hypotheses for the amrinone effects, and to gain more general insight into fundamental aspects of muscle function (e.g. mechanisms underlying the force-velocity relationship), we here study the molecular effects of amrinone on fast skeletal muscle myosin preparations in the presence and absence of actin.In vitro motility assay studies at different ionic strengths suggest that drag forces, caused by increased fraction of myosin heads in weak binding states, are not important for the effect of amrinone on sliding velocity. Likewise, optical tweezers studies showed no effect of the drug on the myosin step length. Finally, ideas that amrinone should reduce sliding velocity by reduced rate of MgATP-induced dissociation could be discarded because the drug actually increased the rate of this process. Instead, we found an amrinone-induced increase in the MgADP affinity of heavy meromyosin (HMM) in the presence of actin. Interestingly, similar effects of amrinone were not observed using myosin S1. As discussed below, this result and other results point to an amrinone-induced reduction in the rate of a strain-dependent MgADP release step. Simulations, using a model modified from that of Edman et al. (25), support this proposed mechanism of action. The results are discussed in relation to fundamental mechanisms underlying the force-velocity relationship of fast skeletal muscle, including which step determines shortening velocity and the possible importance of inter-head cooperativity.  相似文献   
47.
The DuPont Company has maintained a mortality registry for all active and pensioned U.S. employees since 1957. Standardized mortality ratios (SMRs) for each plant site in the U.S. can be calculated based on the comparison with the entire U.S. DuPont population or with a regional subset of DuPont employees. We compared the SMRs derived from a large, international cohort mortality study of chloroprene workers (IISRP study) with those derived from the entire DuPont Registry and appropriate subpopulations of the registry for two U.S. neoprene plants--Louisville (Kentucky) and Pontchartrain (Louisiana). SMRs from the IISRP study for the Louisville cohort based on national rates for all causes of death, all cancers, respiratory cancer, and liver cancer are higher than those based on local mortality rates. Both the national and local comparisons (several counties surrounding each plant) for all-cancer SMRs are lower than 1.0, the local comparison being statistically significantly reduced. In contrast, the SMRs based on the total U.S. DuPont worker mortality rates for all causes of death (1.13), all cancers (1.11), and respiratory cancers (1.37) are statistically significantly increased. The SMR for liver cancer (1.27), although elevated, is not statistically significant. SMRs based on DuPont Region 1 were closer to 1.0, and the SMR for all cancers was no longer significant. Stratification of the Louisville subcohort of males using the same cumulative exposure categories used in the IISRP study yielded SMRs calculated against DuPont Region 1 that were generally higher than those calculated against U.S. and local rates. Only the third exposure category showed SMRs statistically significantly above 1.0 for all cancers and for cancer of bronchus, trachea, and lung. However, there does not appear to be an exposure-response trend. The SMRs from the IISRP study for the Pontchartrain cohort based on national rates are higher than those based on local rates for all causes of death, but all are less than 1.0. The all-cause SMRs for both local and national comparisons are significantly reduced. There were no deaths from liver cancers observed in this cohort. Comparisons of the Pontchartrain cohort against the total U.S. DuPont worker mortality rates resulted in higher SMRs for all causes of death (0.98), all cancers (1.03), and respiratory cancer (1.08), but none were statistically significant. SMRs based on DuPont Region 2 showed very little change from those based on the total registry. The use of reference rates based on regional workers in the same large company produces SMRs lower than those based on the entire company population (regional socio-cultural effects) but higher than those based on geographically closer local general populations (healthy worker effect). The healthy worker effect is seen in cancer mortality rates as well as in other chronic diseases.  相似文献   
48.
49.
TLRs, which form an interface between mammalian host and microbe, play a key role in pathogen recognition and initiation of proinflammatory response thus stimulating antimicrobial activity and host survival. However, certain intracellular pathogens such as Leishmania can successfully manipulate the TLR signaling, thus hijacking the defensive strategies of the host. Despite the presence of lipophosphoglycan, a TLR2 ligand capable of eliciting host-defensive cytokine response, on the surface of Leishmania, the strategies adopted by the parasite to silence the TLR2-mediated proinflammatory response is not understood. In this study, we showed that Leishmania donovani modulates the TLR2-mediated pathway in macrophages through inhibition of the IKK-NF-κB cascade and suppression of IL-12 and TNF-α production. This may be due to impairment of the association of TRAF6 with the TAK-TAB complex, thus inhibiting the recruitment of TRAF6 in TLR2 signaling. L. donovani infection drastically reduced Lys 63-linked ubiquitination of TRAF6, and the deubiquitinating enzyme A20 was found to be significantly upregulated in infected macrophages. Small interfering RNA-mediated silencing of A20 restored the Lys 63-linked ubiquitination of TRAF6 as well as IL-12 and TNF-α levels with a concomitant decrease in IL-10 and TGF-β synthesis in infected macrophages. Knockdown of A20 led to lower parasite survival within macrophages. Moreover, in vivo silencing of A20 by short hairpin RNA in BALB/c mice led to increased NF-κB DNA binding and host-protective proinflammatory cytokine response resulting in effective parasite clearance. These results suggest that L. donovani might exploit host A20 to inhibit the TLR2-mediated proinflammatory gene expression, thus escaping the immune responses of the host.  相似文献   
50.
Formation of bacterial biofilms at solid–liquid interfaces creates numerous problems in biomedical sciences. Conventional sterilization and decontamination methods are not suitable for new and more sophisticated biomaterials. In this paper, the efficiency and effectiveness of gas discharges in the inactivation and removal of biofilms on biomaterials were studied. It was found that although discharge oxygen, nitrogen and argon all demonstrated excellent antibacterial and antibiofilm activity, gases with distinct chemical/physical properties underwent different mechanisms of action. Discharge oxygen- and nitrogen-mediated decontamination was associated with strong etching effects, which can cause live bacteria to relocate thus spreading contamination. On the contrary, although discharge argon at low powers maintained excellent antibacterial ability, it had negligible etching effects. Based on these results, an effective decontamination approach using discharge argon was established in which bacteria and biofilms were killed in situ and then removed from the contaminated biomaterials. This novel procedure is applicable for a wide range of biomaterials and biomedical devices in an in vivo and clinical setting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号