首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   265篇
  免费   28篇
  2021年   2篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   4篇
  2014年   3篇
  2013年   10篇
  2012年   5篇
  2011年   12篇
  2010年   2篇
  2009年   3篇
  2008年   10篇
  2007年   5篇
  2006年   13篇
  2005年   9篇
  2004年   7篇
  2003年   9篇
  2002年   11篇
  2001年   3篇
  2000年   6篇
  1999年   2篇
  1998年   3篇
  1997年   7篇
  1996年   4篇
  1993年   5篇
  1992年   7篇
  1991年   9篇
  1990年   5篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1986年   5篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   4篇
  1981年   8篇
  1980年   10篇
  1979年   30篇
  1978年   13篇
  1977年   7篇
  1976年   2篇
  1974年   2篇
  1972年   4篇
  1967年   2篇
  1964年   2篇
  1960年   1篇
  1957年   2篇
  1955年   3篇
排序方式: 共有293条查询结果,搜索用时 312 毫秒
71.
This paper presents a tryptophan phosphorescence spectroscopy study on the membrane-bound mannitol transporter, EII(mtl), from E. coli. The protein contains four tryptophans at positions 30, 42, 109, and 117. Phosphorescence decays in buffer at 1 degrees C revealed large variations of the triplet lifetimes of the wild-type protein and four single-tryptophan-containing mutants. They ranged from <70 microseconds for the tryptophan at position 109 to 55 ms for the residue at position 30, attesting to widely different flexibilities of the tryptophan microenvironments. The decay of all tryptophans is multiexponential, reflecting multiple stable conformations of the protein. Both mannitol binding and enzyme phosphorylation had large effects on the triplet lifetimes. Mannitol binding induces a more ordered structure near the mannitol binding site, and the decay becomes significantly more homogeneous. In contrast, enzyme phosphorylation induces a large relaxation of the protein structure at the reporter sites. The implications of these structural changes on the coupling mechanism between the transport and the phosphorylation activity of EII(mtl) are discussed. Taken as a whole, our data show that tryptophan phosphorescence spectroscopy is a very sensitive technique to explore conformational dynamics in membrane proteins.  相似文献   
72.
In vitro, little specificity is seen for modulation of effectors by different combinations of Gbetagamma subunits from heterotrimeric G proteins. Here, we demonstrate that the coupling of specific combinations of Gbetagamma subunits to different receptors leads to a differential ability to modulate effectors in vivo. We have shown that the beta(1)AR and beta(2)AR can activate homomultimers of the human inwardly rectifying potassium channel Kir 3.2 when coexpressed in Xenopus oocytes, and that this requires a functional mammalian Gs heterotrimer. Modulation was independent of cAMP production, suggesting a membrane-delimited mechanism. To analyze further the importance of different Gbetagamma combinations, we have tested the facilitation of Kir 3.2 activation by betaAR mediated by different Gbetagamma subunits. The subunits tested were Gbeta(1,5) and Ggamma(1,2,7,11). These experiments demonstrated significant variation between the ability of the Gbetagamma combinations to activate the channels after receptor stimulation. This was in marked contrast to the situation in vitro where little specificity for binding of a Kir 3.1 C-terminal GST fusion protein by different Gbetagamma combinations was detected. More importantly, neither receptor, although homologous both structurally and functionally, shared the same preference for Gbetagamma subunits. In the presence of beta(1)AR, Gbeta(5)gamma(1) and Gbeta(5)gamma(11) activated Kir 3.2 to the greatest extent, while for the beta(2)AR, Gbeta(1)gamma(7), Gbeta(1)gamma(11,) and Gbeta(5)gamma(2) produced the greatest responses. Interestingly, no preference was seen in the ability of different Gbetagamma subunits to facilitate receptor-stimulated GTPase activity of the Gsalpha. These results suggest that it is not the receptor/G protein alpha subunit interaction or the Gbetagamma/effector interaction that is altered by Gbetagamma, but rather that the ability of the receptor to interact productively with the Gbetagamma subunit directly and/or the G protein/effector complex is dependent on the specific G protein heterotrimer associated with the receptor.  相似文献   
73.
The determination by NMR of the solution structure of the phosphorylated enzyme IIB (P-IIB(Chb)) of the N,N'-diacetylchitobiose-specific phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli is presented. Most of the backbone and side-chain resonances were assigned using a variety of mostly heteronuclear NMR experiments. The remaining resonances were assigned with the help of the structure calculations.NOE-derived distance restraints were used in distance geometry calculations followed by molecular dynamics and simulated annealing protocols. In addition, combinations of ambiguous restraints were used to resolve ambiguities in the NOE assignments. By combining sets of ambiguous and unambiguous restraints into new ambiguous restraints, an error function was constructed that was less sensitive to information loss caused by assignment uncertainties. The final set of structures had a pairwise rmsd of 0.59 A and 1.16 A for the heavy atoms of the backbone and side-chains, respectively.Comparing the P-IIB(Chb) solution structure with the previously determined NMR and X-ray structures of the wild-type and the Cys10Ser mutant shows that significant differences between the structures are limited to the active-site region. The phosphoryl group at the active-site cysteine residue is surrounded by a loop formed by residues 10 through 16. NOE and chemical shift data suggest that the phosphoryl group makes hydrogen bonds with the backbone amide protons of residues 12 and 15. The binding mode of the phosphoryl group is very similar to that of the protein tyrosine phosphatases. The differences observed are in accordance with the presumption that IIB(Chb) has to be more resistant to hydrolysis than the protein tyrosine phosphatases. We propose a proton relay network by which a transfer occurs between the cysteine SH proton and the solvent via the hydroxyl group of Thr16.  相似文献   
74.
Part of the dimer and B/C domain interface of the Escherichia coli mannitol permease (EII(mtl)) has been identified by the generation of disulfide bridges in a single-cysteine EII(mtl), with only the activity linked Cys(384) in the B domain, and in a double-cysteine EII(mtl) with cysteines at positions 384 and 124 in the first cytoplasmic loop of the C domain. The disulfide bridges were formed in the enzyme in inside-out membrane vesicles and in the purified enzyme by oxidation with Cu(II)-(1,10-phenanthroline)(3), and they were visualized by SDS-polyacrylamide gel electrophoresis. Discrimination between possible disulfide bridges in the dimeric double-cysteine EII(mtl) was done by partial digestion of the protein and the formation of heterodimers, in which the cysteines were located either on different subunits or on one subunit. The disulfide bridges that were identified are an intersubunit Cys(384)-Cys(384), an intersubunit Cys(124)-Cys(124), an intersubunit Cys(384)-Cys(124), and an intrasubunit Cys(384)-Cys(124). The disulfide bridges between the B and C domain were observed with purified enzyme and confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Mannitol did not influence the formation of the disulfide between Cys(384) and Cys(124). The close proximity of the two cysteines 124 was further confirmed with a separate C domain by oxidation with Cu(II)-(1,10-phenanthroline)(3) or by reactions with dimaleimides of different length. The data in combination with other work show that the first cytoplasmic loop around residue 124 is located at the dimer interface and involved in the interaction between the B and C domain.  相似文献   
75.
Insect attraction to host plants may be partly mediated by visual stimuli. In the present study, the responses of adult Hycleus apicicornis (Guér.) (Coleoptera: Meloidae) to plant models of different colours, different combinations of two colours, or three hues of blue of different shapes are compared. Single‐colour models comprised the colours sky blue, bright green, yellow, red, white and black. Sky blue (reflecting light in the 440–500 nm region) is the most attractive, followed by white, which reflects light over a broader range (400–700 nm). On landing on sky blue targets, beetles exhibit feeding behaviour immediately. When different hues of blue (of different shapes) are compared, sky blue is preferred over turquoise, followed by dark blue, indicating that H. apicicornis is more attracted to lighter hues of blue than to darker ones. No significant differences are found between the three shapes (circle, square and triangle) tested, suggesting that reflectance associated with colour could be a more important visual cue than shape for host location by H. apicicornis. The preference of H. apicicornis for sky blue can be exploited in designing an attractive trap for its management.  相似文献   
76.
Abstract

a general synthetic pathway has been developped to obtain aromatic amine-imidazole ring opened guanosine adducts.  相似文献   
77.
Summary The phosphoenolpyruvate-dependent sugar transport system (PTS) is present in a large variety of bacteria. It catalyzes transport and phosphorylation of hexoses and hexitols at the expense of phosphoenolpyruvate. Only three of four enzymes are required for this entire sequence. Each component has been isolated and purified to the homogeneity from one bacterial species or another allowing recent investigations intomechanistic aspects of energy coupling, energy conservation, transport and regulation using well-characterized enzymes. In each case the phosphorylation of the enzyme is a key element in that enzymes function.The initial step in the energy conversion process is the EI catalyzed conversion of phosphoenolpyruvate to pyruvate and P-HPr. EII is a metal requiring hydrophobic enzyme which is active only as a dimer. Kinetic and gel filtration data confirm that it forms functional ternary complexes with HPr or P-Hpr and phosphoenolpyruvate or pyruvate which influence both the degree of dimerization and the specific activity of the dimer. The dimer appears to carry only one phosphoryl group suggesting that negative cooperativity or a flip-flop mechanism may be involved in the sequence of phosphoryl group transfer.Many of the PTS phosphoenzyme intermediates carry the phosphoryl group as a phospho-histidine. A general mechanism for the transfer of the phosphoryl group to and from the active site histidine residue in each protein has been established with high resolution 1H NMR data. At physiological pH the active site histidine is deprotonated, whereas the phosphohistidine is protonated. Consequently the histidine, as a strong nucleophile, can abstract the phosphoryl group from the donor while protonation destabilizes the phosphohistidine facilitating passage of the phosphoryl group to the following enzyme intermediate. The change in protonation state accompanies a phosphorylation induced conformational change in the carrier.The ability of the PTS to regulate the activity of other permeases and catabolic enzymes has been attributed to EIII Glc. Data obtained with mutants suggest that changes in the phosphorylation state alter the regulatory properties of the enzyme. The nonphosphorylated species blocks various permeases and suppresses adenylate cyclase activity thereby inhibiting the synthesis of catabolic enzyme systems. The phosphorylated species stimulates adenylate cyclase and permits the uptake of inducers leading to the initiation of catabolic enzyme synthesis. Experiments with the isolated EIII Glc confirm that a phosphoenzyme intermediate exists.Transport and phosphorylation of the sugar are catalyzed by a membrane-bound EII via a phosphoenzyme intermediate which can be reached from P-HPr, P-EIII or sugar-P. The phosphorylation state controls the affinity of the enzyme for its substrates. EII is high affinity for P-HPr or P-EIII and low affinity for sugar. P-EII is high affinity for sugar and low affinity for P-HPr or P-EIII. The affinity of the enzyme for sugar substrates is controlled by the oxidation state of a dithiol. The reduced, dithiol form is high affinity for sugar substrates. The oxidized, disulfide form, is low affinity. Phosphorylation of the enzyme chould shift the affinity for substrates by altering the oxidation state of the enzyme.  相似文献   
78.
This paper describes an approach for measuring navigation accuracy relative to cognitive skills. The methodology behind the assessment will thus be clearly outlined in a step-by-step manner. Navigational skills are important when trying to find symbols within a speech-generating device (SGD) that has a dynamic screen and taxonomical organization. The following skills have been found to impact children’s ability to find symbols when navigating within the levels of an SGD: sustained attention, categorization, cognitive flexibility, and fluid reasoning1,2. According to past studies, working memory was not correlated with navigation1,2.The materials needed for this method include a computerized tablet, an augmentative and alternative communication application, a booklet of symbols, and the Leiter International Performance Scale-Revised (Leiter-R)3. This method has been used in two previous studies. Robillard, Mayer-Crittenden, Roy-Charland, Minor-Corriveau and Bélanger1 assessed typically developing children, while Rondeau, Robillard and Roy-Charland2 assessed children and adolescents with a diagnosis of Autism Spectrum Disorder. The direct observation of this method will facilitate the replication of this study for researchers. It will also help clinicians that work with children who have complex communication needs to determine the children’s ability to navigate an SGD with taxonomical categorization.  相似文献   
79.
80.
Cholesterol-laden monocyte-derived macrophages are phagocytic cells characteristic of early and advanced atherosclerotic lesions. Interleukin-6 (IL-6) is a macrophage secretory product that is abundantly expressed in atherosclerotic plaques but whose precise role in atherogenesis is unclear. The capacity of macrophages to clear apoptotic cells, through the efferocytosis mechanism, as well as to reduce cellular cholesterol accumulation contributes to prevent plaque progression and instability. By virtue of its capacity to promote cellular cholesterol efflux from phagocyte-macrophages, ABCA1 was reported to reduce atherosclerosis. We demonstrated that lipid loading in human macrophages was accompanied by a strong increase of IL-6 secretion. Interestingly, IL-6 markedly induced ABCA1 expression and enhanced ABCA1-mediated cholesterol efflux from human macrophages to apoAI. Stimulation of ABCA1-mediated cholesterol efflux by IL-6 was, however, abolished by selective inhibition of the Jak-2/Stat3 signaling pathway. In addition, we observed that the expression of molecules described to promote efferocytosis, i.e. c-mer proto-oncogene-tyrosine kinase, thrombospondin-1, and transglutaminase 2, was significantly induced in human macrophages upon treatment with IL-6. Consistent with these findings, IL-6 enhanced the capacity of human macrophages to phagocytose apoptotic cells; moreover, we observed that IL-6 stimulates the ABCA1-mediated efflux of cholesterol derived from the ingestion of free cholesterol-loaded apoptotic macrophages. Finally, the treatment of human macrophages with IL-6 led to the establishment of an anti-inflammatory cytokine profile, characterized by an increased secretion of IL-4 and IL-10 together with a decrease of that of IL-1β. Taken together, our results indicate that IL-6 favors the elimination of excess cholesterol in human macrophages and phagocytes by stimulation of ABCA1-mediated cellular free cholesterol efflux and attenuates the macrophage proinflammatory phenotype. Thus, high amounts of IL-6 secreted by lipid laden human macrophages may constitute a protective response from macrophages to prevent accumulation of cytotoxic-free cholesterol. Such a cellular recycling of free cholesterol may contribute to reduce both foam cell formation and the accumulation of apoptotic bodies as well as intraplaque inflammation in atherosclerotic lesions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号