首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   265篇
  免费   28篇
  2021年   2篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   4篇
  2014年   3篇
  2013年   10篇
  2012年   5篇
  2011年   12篇
  2010年   2篇
  2009年   3篇
  2008年   10篇
  2007年   5篇
  2006年   13篇
  2005年   9篇
  2004年   7篇
  2003年   9篇
  2002年   11篇
  2001年   3篇
  2000年   6篇
  1999年   2篇
  1998年   3篇
  1997年   7篇
  1996年   4篇
  1993年   5篇
  1992年   7篇
  1991年   9篇
  1990年   5篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1986年   5篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   4篇
  1981年   8篇
  1980年   10篇
  1979年   30篇
  1978年   13篇
  1977年   7篇
  1976年   2篇
  1974年   2篇
  1972年   4篇
  1967年   2篇
  1964年   2篇
  1960年   1篇
  1957年   2篇
  1955年   3篇
排序方式: 共有293条查询结果,搜索用时 312 毫秒
51.
High resolution proton nuclear magnetic resonance has been used to observe protons at the active site of chymotrypsin Aδ and at the same region of chymotrypsinogen A. A single resonance with the intensity of one proton is located in the low field region of the nuclear magnetic resonance spectrum. This resonance is observed in H2O solutions but not in 2H2O. On going from low to high pH the resonance titrates upfield 3 parts per million in both proteins and has a pK of 7.5. The titration can be prevented by alkylating His57 with either of two active site directed chloromethyl ketones. Using these data the proton resonance has been assigned to a proton in a hydrogen bond between His57 and Asp102. Further confirmation of this assignment lies in the observation of a similar resonance in this same low field region of the nuclear magnetic resonance spectrum of trypsin, trypsinogen, subtilisin BPN′ and α-lytic protease all of which have the Asp-His-Ser triad at their active sites.This proton resonance in chymotrypsin Aδ was used as a probe to monitor the charge state of the active site upon formation of a stable acyl-enzyme analogue N2(N-acetylalanyl)-N1benzoylcarbazoyl-chymotrypsin Aδ. In this derivative the His-Asp proton resonance titrates from the same low pH end point as in the native enzyme, ?18 parts per million, to a new high pH end point of ?14.4 parts per million (versus ?15.0 parts per million in the native enzyme). The difference of 0.6 parts per million in the high pH end points between the native and acyl enzyme is interpreted as supporting the suggestion that a hydrogen bond exists between Ser195 and His57 in the native enzyme and zymogen.We conclude from these studies that the charge relay system from Asp102 across His57 to Ser195 is intact in chymotrypsin Aδ and chymotrypsinogen A, and that, in the native enzyme, it slightly polarizes Ser195.  相似文献   
52.
53.
In this study, we examine the interaction between two bacterial proteins, namely HPr and IIAmtl of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system, using FTIR spectroscopy. In an interaction involving a 1:1 molar ratio of these two proteins, when they are unlabeled, the overlap of absorbance of the amide I band arising from the peptide group vibrations of the two proteins is such that it is not possible to determine the contribution which each protein makes to the absorbance. Uniform 15N labeling has little effect on the frequency of the amide I band although there is a significant shift of the amide II band. However, we show that uniform (90%) 13C labeling produces a large shift of bands associated with the carbonyl moiety, especially the amide I band. This opens up windows in different regions of the infrared spectrum. Thus, when the same mixture of the two bacterial proteins is made where one of the proteins is uniformly 13C-labeled (in our case HPr), the amide I maxima of this protein shifts by approximately 45 cm-1 toward lower frequency and reveals the previously overlapped amide I band of the unlabeled IIAmtl. This application of 13C labeling shows the potential of studying protein-protein interactions using FTIR spectroscopy. With thoughtful selection of systems and labeling strategies, numerous studies with proteins should be possible. These could include, among others, enzyme-substrate and protein-ligand interactions.  相似文献   
54.
55.
H H Pas  G T Robillard 《Biochemistry》1988,27(15):5515-5519
The cysteines of the membrane-bound mannitol-specific enzyme II (EIIMtl) of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system have been labeled with 4-vinylpyridine. After proteolytic breakdown and reversed-phase HPLC, the peptides containing cysteines 110, 384, and 571 could be identified. N-Ethylmaleimide (NEM) treatment of the native unphosphorylated enzyme results in incorporation of one NEM label per molecule and loss of enzymatic activity [Roossien, F. F., & Robillard, G. T. (1984) Biochemistry 23, 211-215]. NEM treatment and inactivation prevented 4-vinylpyridine incorporation into the Cys-384-containing peptide, identifying this residue as the activity-linked cysteine. Both oxidation and phosphorylation of the native enzyme protected the enzyme against NEM labeling of Cys-384. Positive identification of the activity-linked cysteine was accomplished by inactivation with [14C]iodoacetamide, proteolytic fragmentation, isolation of the peptide, and amino acid sequencing.  相似文献   
56.
Purified mannitol-specific enzyme II (EIImtl), in the presence of the detergent Lubrol, catalyzes the phosphorylation of mannitol from P-HPr via a classical ping-pong mechanism involving the participation of a phosphorylated EIImtl intermediate. This intermediate has been demonstrated by using radioactive phosphoenolpyruvate. Upon addition of mannitol, at least 80% of the enzyme-bound phosphoryl groups can be converted to mannitol 1-phosphate. The EIImtl concentration dependence of the exchange reaction indicates that self-association is a prerequisite for catalytic activity. The self-association can be achieved by increasing the EIImtl concentration or at low concentrations of EIImtl by adding HPr or bovine serum albumin. The equilibrium is shifted toward the dissociated form by mannitol 1-phosphate, resulting in a mannitol 1-phosphate induced inhibition. Mannitol does not affect the association state of the enzyme. Both mannitol and mannitol 1-phosphate also act as classical substrate inhibitors. The apparent Ki of each compound, however, is approximately equal to its apparent Km, suggesting that mannitol and mannitol 1-phosphate bind at the same site on EIImtl. Due to strong inhibition provided by mannitol and mannitol 1-phosphate in the exchange reaction, the kinetics of this reaction cannot be used to determine whether the reaction proceeds via a ping-pong or an ordered reaction mechanism.  相似文献   
57.
58.
The grasshopper genus Caledonula, endemic to New Caledonia, was studied to understand the evolution of species distributions in relation to climate and soil types. Based on a comprehensive sampling of 80 locations throughout the island, the genus was represented by five species, four of which are new to science, of which three are described here. All the species have limited distributions in New Caledonia. Bioclimatic niche modelling shows that all the species were found in association with a wet climate and reduced seasonality, explaining their restriction to the southern half of the island. The results suggest that the genus was ancestrally constrained by seasonality. A molecular phylogeny was reconstructed using two mitochondrial and two nuclear markers. The partially resolved tree showed monophyly of the species found on metalliferous soils, and molecular dating indicated a rather recent origin for the genus. Adaptation to metalliferous soils is suggested by both morphological changes and radiation on these soils. The genus Caledonula is therefore a good model to understand the origin of microendemism in the context of recent and mixed influences of climate and soil type.  相似文献   
59.
Sulfhydryl reagents affected the binding properties of the translocator domain, NIII, of enzyme IImtl in two ways: (i) the affinity for mannitol was reduced, and (ii) the exchange rate of bound and free mannitol was increased. The effect on the affinity was very much reduced after solubilization of enzyme IImtl in the detergent decylPEG. The effects were caused exclusively by reaction of the sulfhydryl reagents with the cysteine residue at position 384 in the primary sequence. Interaction between two domains is involved, since Cys384 is located in the cytoplasmic domain, CII. When Cys384 was mutated to serine, the enzyme exhibited the same binding properties as the chemically modified enzyme. The data support our proposal that phosphorylation of enzyme IImtl drastically reduces the activation energy for the translocation step through interaction between domains CII and NIII [Lolkema J. S., ten Hoeve-Duurkens, R. H., Swaving Dijkstra, D., & Robillard, G. T. (1991) Biochemistry (preceding paper in this issue)]. Functional interaction between the translocator domain, NIII, and domain CI was investigated by phosphorylation of His554, located in domain CI, in the C384S mutant. No effect on the binding properties was observed. In addition, the binding properties were insensitive to the presence of the soluble phosphotransferase components enzyme I and HPr.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号