全文获取类型
收费全文 | 7283篇 |
免费 | 978篇 |
国内免费 | 1篇 |
专业分类
8262篇 |
出版年
2021年 | 67篇 |
2019年 | 67篇 |
2018年 | 66篇 |
2017年 | 63篇 |
2016年 | 111篇 |
2015年 | 180篇 |
2014年 | 165篇 |
2013年 | 246篇 |
2012年 | 298篇 |
2011年 | 262篇 |
2010年 | 158篇 |
2009年 | 180篇 |
2008年 | 267篇 |
2007年 | 277篇 |
2006年 | 254篇 |
2005年 | 253篇 |
2004年 | 246篇 |
2003年 | 229篇 |
2002年 | 210篇 |
2001年 | 217篇 |
2000年 | 235篇 |
1999年 | 205篇 |
1998年 | 98篇 |
1997年 | 110篇 |
1996年 | 111篇 |
1995年 | 102篇 |
1994年 | 104篇 |
1993年 | 87篇 |
1992年 | 199篇 |
1991年 | 204篇 |
1990年 | 165篇 |
1989年 | 162篇 |
1988年 | 165篇 |
1987年 | 153篇 |
1986年 | 158篇 |
1985年 | 163篇 |
1984年 | 136篇 |
1983年 | 110篇 |
1982年 | 116篇 |
1981年 | 65篇 |
1980年 | 80篇 |
1979年 | 118篇 |
1978年 | 102篇 |
1977年 | 85篇 |
1976年 | 92篇 |
1975年 | 77篇 |
1974年 | 87篇 |
1973年 | 94篇 |
1972年 | 71篇 |
1971年 | 68篇 |
排序方式: 共有8262条查询结果,搜索用时 15 毫秒
171.
Exposure of plants to chilling (low temperatures above freezing) limits growth and development in all environments outside the lowest latitudes. Cell ultrastructure and morphometric studies may allow associations to be made between chilling-induced changes at the ultrastructural level, molecular events and their physiological consequences. We examined changes in the shape, size and membrane organization of the organelles of mesophyll cells in Arabidopsis thaliana (Col 0), a cold-resistant species, after subjecting 6-week-old plants grown at normal growth temperatures to chilling (2.5–4°C; 14-h dark/10-h light cycle) for 6, 24 and 72 h and after a re-warming period of 50 h. No ultrastructural differences were seen in the first 6 h of chilling but after 24 h we observed swollen and rounded chloroplasts with larger starch grains and dilated thylakoids compared to control plants. By 72 h, chilling had resulted in a large accumulation of starch in chloroplasts, an apparent crowding of the cytosol and a lower abundance of peripheral reticulum than in the controls. The average area per chloroplast in cell sections increased after 72-h chilling while the number of chloroplasts remained the same. Ring-shaped and other morphologically aberrant mitochondria were present in significantly higher abundance in plants given 72 h chilling than in the controls. Plant re-warming for 50 h reduced chloroplast size to those of the controls and returned mitochondria to standard morphology, but peripheral reticulum remained less abundant than in plants never given a cold treatment. The near full return to normal ultrastructure upon plant re-warming indicates that the morphological changes may be part of acclimation to cold. 相似文献
172.
An investigation into the membrane-interactive potential of the Escherichia coli KpsE C-terminus 总被引:4,自引:0,他引:4
Phoenix DA Brandenburg K Harris F Seydel U Hammerton T Roberts IS 《Biochemical and biophysical research communications》2001,285(4):976-980
Membrane binding via C-terminal amphiphilic alpha-helical structure is a novel anchoring mechanism, which has been characterised in a number of prokaryotic carboxypeptidases. Here, we have used graphical and DWIH analyses to ascertain if a similar anchoring mechanism may be utilised by the Escherichia coli KpsE protein in its binding to the periplasmic face of the inner membrane. The results of these analyses have been compared to those obtained for similar analyses of the C-terminal sequences of E. coli penicillin-binding proteins (PBPs) PBP5 and PBP6 which, are known to function as amphiphilic alpha-helical membrane anchors, and of melittin, a known membrane-interactive toxin. We have also used FTIR spectroscopy and lipid phase transition temperature analysis to investigate the interaction of a peptide homologue of KpsE C-terminal region with membrane lipid. Our results suggest that the KpsE C-terminal sequence has the potential to form an amphiphilic alpha-helix and that this alpha-helix could feature in the membrane binding of the protein. 相似文献
173.
Interaction of the lantibiotic nisin with mixed lipid bilayers: a 31P and 2H NMR study 总被引:1,自引:0,他引:1
Nisin is a positively charged antibacterial peptide which binds to the negatively charged membranes of Gram-positive bacteria. The initial interaction of the peptide with model membranes of neutral (phosphatidylcholine) and negatively charged (phosphatidylcholine/phosphatidylglycerol) model lipid membranes was studied using nonperturbing solid state magic angle spinning (MAS) (31)P NMR and (2)H wide-line NMR. In the presence of nisin, the coexistence of two bilayer lipid environments was observed both in charged and in neutral membranes. One lipid environment was found to be associated with lipid directly interacting with nisin and one with noninteracting lipid. Solid state (31)P MAS NMR results show that the acidic membrane lipid component partitions preferentially into the nisin-associated environment. Deuterium NMR ((2)H NMR) of the selectively headgroup-labeled acidic lipid provides further evidence of a strong interaction between the charged lipid component and the peptide. The segregation of acidic lipid into the nisin-bound environment was quantified from (2)H NMR measurements of selectively headgroup-deuterated neutral lipid. It is suggested that the observed lipid partitioning in the presence of nisin is driven, at least initially, by electrostatic interactions. (2)H NMR measurements from chain-perdeuterated neutral lipids indicate that nisin perturbs the hydrophobic region of both charged and neutral bilayers. 相似文献
174.
175.
Sarah A. Wilson Patricia Keen Michelle C. McKee Nicole Raia Joyce Van Eck Susan C. Roberts 《In vitro cellular & developmental biology. Plant》2018,54(1):36-44
The FDA-approved anti-cancer compound paclitaxel is currently produced commercially by Taxus plant cell suspension cultures. One major limitation to the use of plant cell culture as a production platform is the low and variable product yields. Therefore, methods to increase and stabilize paclitaxel production are necessary to ensure product security, especially as the demand for paclitaxel continues to rise. Although a stable transformation method for Taxus suspension cultures has been developed, stable transformant yields are low (around 1% of experiments) and the method does not translate to the Taxus cuspidata Siebold and Zucc. and Taxus canadensis Marshall cell lines utilized in this study. Therefore, a new method for Agrobacterium-mediated transformation of Taxus callus and suspension cultures was developed through identification of the optimal Agrobacterium strain, inclusion of an anti-necrotic cocktail (silver nitrate, cysteine, and ascorbic acid) and increased recovery time for cells after cocultivation, the time following infection with Agrobacterium tumefaciens. Application of the increased recovery time to transformation of T. cuspidata line PO93XC resulted in 200 calluses staining positive for GUS. Additionally, two transgenic lines have been maintained with stable transgene expression for over 5 yr. This method represents an improvement over existing transformation methods for Taxus cultures and can be applied for future metabolic engineering efforts. 相似文献
176.
Eric T. Roberts Aaron Horne Seth S. Martin Michael J. Blaha Ron Blankstein Matthew J. Budoff Christopher Sibley Joseph F. Polak Kevin D. Frick Roger S. Blumenthal Khurram Nasir 《PloS one》2015,10(3)
Background
The Multi-Ethnic Study of Atherosclerosis (MESA) showed that the addition of coronary artery calcium (CAC) to traditional risk factors improves risk classification, particularly in intermediate risk asymptomatic patients with LDL cholesterol levels <160 mg/dL. However, the cost-effectiveness of incorporating CAC into treatment decision rules has yet to be clearly delineated.Objective
To model the cost-effectiveness of CAC for cardiovascular risk stratification in asymptomatic, intermediate risk patients not taking a statin. Treatment based on CAC was compared to (1) treatment of all intermediate-risk patients, and (2) treatment on the basis of United States guidelines.Methods
We developed a Markov model of first coronary heart disease (CHD) and cardiovascular disease (CVD) events. We modeled statin treatment in intermediate risk patients with CAC≥1 and CAC≥100, with different intensities of statins based on the CAC score. We compared these CAC-based treatment strategies to a “treat all” strategy and to treatment according to the Adult Treatment Panel III (ATP III) guidelines. Clinical and economic outcomes were modeled over both five- and ten-year time horizons. Outcomes consisted of CHD and CVD events and Quality-Adjusted Life Years (QALYs). Sensitivity analyses considered the effect of higher event rates, different CAC and statin costs, indirect costs, and re-scanning patients with incidentalomas.Results
We project that it is both cost-saving and more effective to scan intermediate-risk patients for CAC and to treat those with CAC≥1, compared to treatment based on established risk-assessment guidelines. Treating patients with CAC≥100 is also preferred to existing guidelines when we account for statin side effects and the disutility of statin use.Conclusion
Compared to the alternatives we assessed, CAC testing is both effective and cost saving as a risk-stratification tool, particularly if there are adverse effects of long-term statin use. CAC may enable providers to better tailor preventive therapy to patients'' risks of CVD. 相似文献177.
Elizabeth Royall Nicole Doyle Azimah Abdul-Wahab Ed Emmott Simon J. Morley Ian Goodfellow Lisa O. Roberts Nicolas Locker 《The Journal of biological chemistry》2015,290(8):4748-4758
Protein synthesis is a tightly controlled process responding to several stimuli, including viral infection. As obligate intracellular parasites, viruses depend on the translation machinery of the host and can manipulate it by affecting the availability and function of specific eukaryotic initiation factors (eIFs). Human norovirus is a member of the Caliciviridae family and is responsible for gastroenteritis outbreaks. Previous studies on feline calicivirus and murine norovirus 1 (MNV1) demonstrated that the viral protein, genome-linked (VPg), acts to direct translation by hijacking the host protein synthesis machinery. Here we report that MNV1 infection modulates the MAPK pathway to activate eIF4E phosphorylation. Our results show that the activation of p38 and Mnk during MNV1 infection is important for MNV1 replication. Furthermore, phosphorylated eIF4E relocates to the polysomes, and this contributes to changes in the translational state of specific host mRNAs. We propose that global translational control of the host by eIF4E phosphorylation is a key component of the host-pathogen interaction. 相似文献
178.
The asparagine-linked sugar chains of human platelet thrombospondin were released as oligosaccharides by hydrazinolysis. About 12 mol of sugar chains was released from one thrombospondin molecule. This was converted to radioactive oligosaccharides by sodium borotritide reduction after N-acetylation, and separated into one neutral and four acidic fractions by paper electrophoresis. More than 90% of the oligosaccharides were recovered in the acidic fraction. The acidic oligosaccharides were mostly converted to neutral oligosaccharides by sialidase treatment, indicating that they are sialyl derivatives. The neutral and sialidase-treated acidic oligosaccharides were further fractionated by Bio-Gel P-4 column chromatography. Structural study of each oligosaccharide by sequential exoglycosidase digestion and methylation analysis revealed that the thrombospondin contains mono-, bi-, tri-, and tetraantennary complex-type sugar chains in addition to a small amount of high-mannose type. Approximately 70% of the complex-type sugar chains was fucosylated at asparagine-linked N-acetylglucosamine residue and 19% of the biantennary complex-type sugar chains was bisected. 相似文献
179.
180.
Isenberg JS Jia Y Fukuyama J Switzer CH Wink DA Roberts DD 《The Journal of biological chemistry》2007,282(21):15404-15415
Although CD36 is generally recognized to be an inhibitory signaling receptor for thrombospondin-1 (TSP1), the molecular mechanism for transduction of this signal remains unclear. Based on evidence that myristic acid and TSP1 each modulate endothelial cell nitric oxide signaling in a CD36-dependent manner, we examined the ability of TSP1 to modulate the fatty acid translocase activity of CD36. TSP1 and a CD36 antibody that mimics the activity of TSP1 inhibited myristate uptake. Recombinant TSP1 type 1 repeats were weakly inhibitory, but an anti-angiogenic peptide derived from this domain potently inhibited myristate uptake. This peptide also inhibited membrane translocation of the myristoylated CD36 signaling target Fyn and activation of Src family kinases. Myristate uptake stimulated cGMP synthesis via endothelial nitric-oxide synthase and soluble guanylyl cyclase. CD36 ligands blocked myristate-stimulated cGMP accumulation in proportion to their ability to inhibit myristate uptake. TSP1 also inhibited myristate-stimulated cGMP synthesis by engaging its receptor CD47. Myristate stimulated endothelial and vascular smooth muscle cell adhesion on type I collagen via the NO/cGMP pathway, and CD36 ligands that inhibit myristate uptake blocked this response. Therefore, the fatty acid translocase activity of CD36 elicits proangiogenic signaling in vascular cells, and TSP1 inhibits this response by simultaneously inhibiting fatty acid uptake via CD36 and downstream cGMP signaling via CD47. 相似文献