首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3095篇
  免费   189篇
  2023年   11篇
  2022年   38篇
  2021年   58篇
  2020年   36篇
  2019年   79篇
  2018年   70篇
  2017年   57篇
  2016年   97篇
  2015年   171篇
  2014年   146篇
  2013年   223篇
  2012年   259篇
  2011年   218篇
  2010年   143篇
  2009年   108篇
  2008年   181篇
  2007年   184篇
  2006年   175篇
  2005年   164篇
  2004年   161篇
  2003年   137篇
  2002年   154篇
  2001年   23篇
  2000年   22篇
  1999年   29篇
  1998年   21篇
  1997年   24篇
  1996年   25篇
  1995年   19篇
  1994年   18篇
  1993年   14篇
  1992年   14篇
  1991年   20篇
  1990年   11篇
  1989年   9篇
  1988年   10篇
  1987年   12篇
  1986年   7篇
  1985年   6篇
  1984年   15篇
  1983年   11篇
  1982年   22篇
  1981年   10篇
  1980年   7篇
  1979年   12篇
  1978年   5篇
  1977年   10篇
  1976年   5篇
  1975年   4篇
  1971年   4篇
排序方式: 共有3284条查询结果,搜索用时 31 毫秒
991.
β-glucuronidase (GUS) can be assayed in the spent media of plant tissues transformed with some GUS gene fusions (Jefferson, 1988). This approach is based on the presence of GUS in the media of transformed plant tissues expressing the gene and can be used to monitor the progress of transformation without destruction of the tissue under study.  相似文献   
992.
993.
994.
Developing a universal influenza vaccine that induces broad spectrum and longer-term immunity has become an important potentially achievable target in influenza vaccine research and development. Hemagglutinin (HA) and neuraminidase (NA) are the two major influenza virus antigens. Although antibody responses against influenza virus are mainly directed toward HA, NA is reported to be more genetically stable; hence NA-based vaccines have the potential to be effective for longer time periods. NA-specific immunity has been shown to limit the spread of influenza virus, thus reducing disease symptoms and providing cross-protection against heterosubtypic viruses in mouse challenge experiments.The production of large quantities of highly pure and stable NA could be beneficial for the development of new antivirals, subunit-based vaccines, and novel diagnostic tools. In this study, recombinant NA (rNA) was produced in mammalian cells at high levels from both swine A/California/07/2009 (H1N1) and avian A/turkey/Turkey/01/2005 (H5N1) influenza viruses. Biochemical, structural, and immunological characterizations revealed that the soluble rNAs produced are tetrameric, enzymatically active and immunogenic, and finally they represent good alternatives to conventionally used sources of NA in the Enzyme-Linked Lectin Assay (ELLA).  相似文献   
995.
ABSTRACT

Bacteria associated with microalgae strongly affect algal biomass and derived product yield and quality. Nevertheless, only a few studies have addressed the detailed phylogenetic characterization of bacterial communities associated with microalgae. In this study, the phycospheric bacterial communities associated with different Tetraselmis suecica F&M-M33 cultures, a green marine microalga with several industrial applications, were analysed using a metagenomic approach. The T. suecica F&M-M33 cultures used originated from the same ancestral microalgal non-axenic culture but were physically and geographically separated for years and maintained under different growing conditions. Despite the different history of the cultures, a ‘core’ bacterial community was identified, accounting for 70% of the total bacterial community and formed by at least 13 families. Among the ‘core’ operational taxonomic units (OTUs), 24 different genera were identified. Nevertheless, there was a high variability in the relative proportions of the taxa forming the ‘core’ community, indicating that the growing conditions and/or external contamination influence the relative abundance of these microorganisms. Our study allowed the identification of persistent taxa that may be used to deepen the knowledge of the complex relationship between T. suecica and its associated bacteria.  相似文献   
996.
Inland waters (lakes, rivers and reservoirs) are now understood to contribute large amounts of methane (CH4) to the atmosphere. However, fluxes are poorly constrained and there is a need for improved knowledge on spatiotemporal variability and on ways of optimizing sampling efforts to yield representative emission estimates for different types of aquatic ecosystems. Low-latitude floodplain lakes and wetlands are among the most high-emitting environments, and here we provide a detailed investigation of spatial and day-to-day variability in a shallow floodplain lake in the Pantanal in Brazil over a five-day period. CH4 flux was dominated by frequent and ubiquitous ebullition. A strong but predictable spatial variability (decreasing flux with increasing distance to the shore or to littoral vegetation) was found, and this pattern can be addressed by sampling along transects from the shore to the center. Although no distinct day-to-day variability were found, a significant increase in flux was identified from measurement day 1 to measurement day 5, which was likely attributable to a simultaneous increase in temperature. Our study demonstrates that representative emission assessments requires consideration of spatial variability, but also that spatial variability patterns are predictable for lakes of this type and may therefore be addressed through limited sampling efforts if designed properly (e.g., fewer chambers may be used if organized along transects). Such optimized assessments of spatial variability are beneficial by allowing more of the available sampling resources to focus on assessing temporal variability, thereby improving overall flux assessments.  相似文献   
997.
998.
The effects of changes in macrophage iron status, induced by single or multiple iron injections, iron depletion or pregnancy, on both immune function and mRNA expression of genes involved in iron influx and egress have been evaluated. Macrophages isolated from iron deficient rats, or pregnant rats at day 21 of gestation, either supplemented with a single dose of iron dextran, 10 mg, at the commencement of pregnancy, or not, showed significant increases of macrophage ferroportin mRNA expression, which was paralleled by significant decreases in hepatic Hamp mRNA expression. IRP activity in macrophages was not significantly altered by iron status or the inducement of pregnancy ± a single iron supplement. Macrophage immune function was significantly altered by iron supplementation and pregnancy. Iron supplementation, alone or combined with pregnancy, increased the activities of both NADPH oxidase and nuclear factor kappa B (NFκB). In contrast, the imposition of pregnancy reduced the ability of these parameters to respond to an inflammatory stimuli. Increasing iron status, if only marginally, will reduce the ability of macrophages to mount a sustained response to inflammation as well as altering iron homeostatic mechanisms.  相似文献   
999.
Group B Streptococcus (GBS) is a major cause of invasive disease in infants. Like other Gram-positive bacteria, GBS uses a sortase C-catalyzed transpeptidation mechanism to generate cell surface pili from backbone and ancillary pilin precursor substrates. The three pilus types identified in GBS contain structural subunits that are highly immunogenic and are promising candidates for the development of a broadly-protective vaccine. Here we report the X-ray crystal structure of the backbone protein of pilus 2b (BP-2b) at 1.06Å resolution. The structure reveals a classical IgG-like fold typical of the pilin subunits of other Gram-positive bacteria. The crystallized portion of the protein (residues 185-468) encompasses domains D2 and D3 that together confer high stability to the protein due to the presence of an internal isopeptide bond within each domain. The D2+D3 region, lacking the N-terminal D1 domain, was as potent as the entire protein in conferring protection against GBS challenge in a well-established mouse model. By site-directed mutagenesis and complementation studies in GBS knock-out strains we identified the residues and motives essential for assembly of the BP-2b monomers into high-molecular weight complexes, thus providing new insights into pilus 2b polymerization.  相似文献   
1000.
Understanding the relative importance of environment and life history strategies in determining leaf chemical traits remains a key objective of plant ecology. We assessed 20 foliar chemical properties among 12 African savanna woody plant species and their relation to environmental variables (hillslope position, precipitation, geology) and two functional traits (thorn type and seed dispersal mechanism). We found that combinations of six leaf chemical traits (lignin, hemi-cellulose, zinc, boron, magnesium, and manganese) predicted the species with 91% accuracy. Hillslope position, precipitation, and geology accounted for only 12% of the total variance in these six chemical traits. However, thorn type and seed dispersal mechanism accounted for 46% of variance in these chemical traits. The physically defended species had the highest concentrations of hemi-cellulose and boron. Species without physical defense had the highest lignin content if dispersed by vertebrates, but threefold lower lignin content if dispersed by wind. One of the most abundant woody species in southern Africa, Colophospermum mopane, was found to have the highest foliar concentrations of zinc, phosphorus, and δ13C, suggesting that zinc chelation may be used by this species to bind metallic toxins and increase uptake of soil phosphorus. Across all studied species, taxonomy and physical traits accounted for the majority of variability in leaf chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号