首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2964篇
  免费   183篇
  3147篇
  2023年   14篇
  2022年   39篇
  2021年   56篇
  2020年   35篇
  2019年   75篇
  2018年   70篇
  2017年   53篇
  2016年   89篇
  2015年   164篇
  2014年   140篇
  2013年   208篇
  2012年   243篇
  2011年   210篇
  2010年   136篇
  2009年   102篇
  2008年   173篇
  2007年   180篇
  2006年   169篇
  2005年   162篇
  2004年   158篇
  2003年   132篇
  2002年   151篇
  2001年   23篇
  2000年   19篇
  1999年   28篇
  1998年   21篇
  1997年   20篇
  1996年   23篇
  1995年   20篇
  1994年   16篇
  1993年   14篇
  1992年   12篇
  1991年   19篇
  1990年   9篇
  1989年   9篇
  1988年   10篇
  1987年   12篇
  1986年   6篇
  1985年   6篇
  1984年   12篇
  1983年   10篇
  1982年   21篇
  1981年   9篇
  1980年   7篇
  1979年   9篇
  1978年   5篇
  1977年   10篇
  1976年   5篇
  1975年   4篇
  1971年   4篇
排序方式: 共有3147条查询结果,搜索用时 15 毫秒
871.
872.
873.
874.
875.
876.
Regulatory phosphorylation of phospholamban and of SR Ca(2+)-ATPase SERCA2a isoform by endogenous CaM-K II in slow-twitch skeletal and cardiac sarcoplasmic reticulum (SR) is well documented, but much less is known of the exact functional role of CaM K II in fast-twitch muscle SR. Recently, it was shown that RNA splicing of brain-specific alpha CaM K II, gives rise to a truncated protein (alpha KAP), consisting mainly of the association domain, serving to anchor CaM K II to SR membrane in rat skeletal muscle [Bayer, K.-U., et al. (1998) EMBO J. 19, 5598-5605]. In the present study, we searched for the presence of alpha KAP in sucrose-density purified SR membrane fractions from representative fast-twitch and slow-twitch limb muscles, both of the rabbit and the rat, using immunoblot techniques and antibody directed against the association domain of alpha CaM K II. Putative alpha KAP was immunodetected as a 23-kDa electrophoretic component on SDS-PAGE of the isolated SR from fast-twitch but not from slow-twitch muscle, and was further identified as a specific substrate of endogenous CaM K II, in the rabbit. Immunodetected, (32)P-labeled, non-calmodulin binding protein, behaved as a single 23-kDa protein species under several electrophoretic conditions. The 23-kDa protein, with defined properties, was isolated as a complex with 60-kDa delta CaM K II isoform, by sucrose-density sedimentation analysis. Moreover, we show here that putative alphaKAP, in spite of its inability to bind CaM in ligand blot overlay, co-eluted with delta CaM K II from CaM-affinity columns. That raises the question of whether CaM K II-mediated phosphorylation of alpha KAP and triadin together might be involved in a molecular signaling pathway important for SR Ca(2+)-release in fast-twitch muscle SR.  相似文献   
877.
The precursor of human cathepsin D (CD) is converted into the single-chain and the double-chain active polypeptides by subsequent proteolysis reactions taking place in the endosomal-lysosomal compartment and involving specific aminoacid sequences. We have mutagenized the region of aminoacids (comprising the beta-hairpin loop) involved in the latter proteolytic maturation step and generated a mutant CD that cannot be converted into the mature double-chain form. This mutant CD expressed in rodent cells reaches the lysosome and is stable as single-chain polypeptide, bears high-mannose type sugars, binds to pepstatin A and is enzymatically active, indicating that it is correctly folded. The present work provides new insights on the aminoacid region involved in the terminal processing of human CD and on the function of the processing beta-hairpin loop.  相似文献   
878.
The development of multidrug resistance (MDR) limits the efficacy of continuous chemotherapeutic treatment in chronic myelogenous leukemia (CML). Low molecular weight protein tyrosine phosphatase (LMW-PTP) is up-regulated in several cancers and has been associated to poor prognosis. This prompted us to investigate the involvement of LMW-PTP in MDR. In this study, we investigated the role of LMW-PTP in a chemoresistant CML cell line, Lucena-1. Our results showed that LMW-PTP is highly expressed and 7-fold more active in Lucena-1 cells compared to K562 cells, the non-resistant cell line. Knocking down LMW-PTP in Lucena-1 cells reverted chemoresistance to vincristine and imatinib mesylate, followed by a decrease of Src and Bcr-Abl phosphorylation at the activating sites, inactivating both kinases. On the other hand, overexpression of LMW-PTP in K562 cells led to chemoresistance to vincristine. Our findings describe, for the first time, that LMW-PTP cooperates with MDR phenotype, at least in part, through maintaining Src and Bcr-Abl kinases in more active statuses. These findings suggest that inhibition of LMW-PTP may be a useful strategy for the development of therapies for multidrug resistant CML.  相似文献   
879.
The trehalose/maltose-binding protein (MalE1) is one component of trehalose and maltose uptake system in the thermophilic organism Thermus thermophilus. MalE1 is a monomeric 48 kDa protein predominantly organized in alpha-helix conformation with a minor content of beta-structure. In this work, we used Fourier-infrared spectroscopy and in silico methodologies for investigating the structural stability properties of MalE1. The protein was studied in the absence and in the presence of maltose as well as in the absence and in the presence of SDS at different p(2)H values (neutral p(2)H and at p(2)H 9.8). In the absence of SDS, the results pointed out a high thermostability of the MalE1 alpha-helices, maintained also at basic p(2)H values. However, the obtained data also showed that at high temperatures the MalE1 beta-sheets underwent to structural rearrangements that were totally reversible when the temperature was lowered. At room temperature, the addition of SDS to the protein solution slightly modified the MalE1 secondary structure content by decreasing the protein thermostability. The infrared data, corroborated by molecular dynamics simulation experiments performed on the structure of MalE1, indicated that the protein hydrophobic interactions have an important role in the MalE1 high thermostability. Finally, the results obtained on MalE1 are also discussed in comparison with the data on similar thermostable proteins already studied in our laboratories.  相似文献   
880.
Persistent dysregulation in Ca2+ homeostasis is a pervasive pathogenic mechanism in most neurodegenerative diseases, and accordingly, calpain activation has been implicated in neuronal cells dysfunction and death. In this study we examined the intracellular functional state of the calpain-calpastatin system in −G93A(+) SOD1 transgenic mice to establish if and how uncontrolled activation of calpain can be prevented in vivo during the course of prolonged [Ca2+]i elevation. The presented data indicate that 1) calpain activation is more extensive in motor cortex, in lumbar, and sacral spinal cord segments compared with the lower or almost undetectable activation of the protease in other brain areas, 2) direct measurements of the variations of Ca2+ levels established that the degree of the protease activation is correlated to the extent of elevation of [Ca2+]i, 3) intracellular activation of calpain is always associated with diffusion of calpastatin from perinuclear aggregated forms into the cytosol and the formation of a calpain-calpastatin complex, and 4) a conservative fragmentation of calpastatin is accompanied by its increased expression and inhibitory capacity in conditions of prolonged increase in [Ca2+]i. Thus, calpastatin diffusion and formation of the calpain-calpastatin complex together with an increased synthesis of the inhibitor protein represent a cellular defense response to conditions of prolonged dysregulation in intracellular Ca2+ homeostasis. Altogether these findings provide a new understanding of the in vivo molecular mechanisms governing calpain activation that can be extended to many neurodegenerative diseases, potentially useful for the development of new therapeutic approaches.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号