首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3047篇
  免费   188篇
  2023年   10篇
  2022年   38篇
  2021年   56篇
  2020年   35篇
  2019年   76篇
  2018年   69篇
  2017年   53篇
  2016年   89篇
  2015年   164篇
  2014年   142篇
  2013年   209篇
  2012年   247篇
  2011年   210篇
  2010年   136篇
  2009年   101篇
  2008年   176篇
  2007年   181篇
  2006年   173篇
  2005年   163篇
  2004年   159篇
  2003年   132篇
  2002年   152篇
  2001年   23篇
  2000年   16篇
  1999年   31篇
  1998年   22篇
  1997年   19篇
  1996年   23篇
  1995年   19篇
  1994年   16篇
  1993年   15篇
  1992年   13篇
  1991年   23篇
  1990年   19篇
  1989年   14篇
  1988年   12篇
  1987年   14篇
  1986年   12篇
  1985年   10篇
  1984年   20篇
  1983年   13篇
  1982年   26篇
  1981年   12篇
  1980年   9篇
  1979年   10篇
  1978年   6篇
  1977年   11篇
  1976年   6篇
  1968年   7篇
  1966年   8篇
排序方式: 共有3235条查询结果,搜索用时 15 毫秒
191.
Brosius JL  Colman RF 《Biochemistry》2002,41(7):2217-2226
Tetrameric adenylosuccinate lyase (ASL) of Bacillus subtilis catalyzes the cleavage of adenylosuccinate to form AMP and fumarate. We previously reported that two distinct subunits contribute residues to each active site, including the His68 and His89 from one and His141 from a second subunit [Brosius, J. L., and Colman, R. F. (2000) Biochemistry 39, 13336-13343]. Glu(275) is 2.8 A from His141 in the ASL crystal structure, and Lys268 is also in the active site region; Glu275 and Lys268 come from a third, distinct subunit. Using site-directed mutagenesis, we have replaced Lys268 by Arg, Gln, Glu, and Ala, with specific activities of the purified mutant enzymes being 0.055, 0.00069, 0.00028, and 0.0, respectively, compared to 1.56 units/mg for wild-type (WT) enzyme. Glu275 was substituted by Gln, Asp, Ala, and Arg; none of these homogeneous mutant enzymes has detectable activity. Circular dichroism and light scattering reveal that neither the secondary structure nor the oligomeric state of the Lys268 mutant enzymes has been perturbed. Native gel electrophoresis and circular dichroism indicate that the Glu275 mutant enzymes are tetramers, but their conformation is altered slightly. For K268R, the K(m)s for all substrates are similar to WT enzyme. Binding studies using [2-3H]-adenylosuccinate reveal that none of the Glu275 mutant enzymes, nor inactive K268A, can bind substrate. We propose that Lys268 participates in binding substrate and that Glu275 is essential for catalysis because of its interaction with His141. Incubation of H89Q with K268Q or E275Q leads to restoration of up to 16% WT activity, while incubation of H141Q with K268Q or E275Q results in 6% WT activity. These complementation studies provide the first functional evidence that a third subunit contributes residues to each intersubunit active site of ASL. Thus, adenylosuccinate lyase has four active sites per enzyme tetramer, each of which is formed from regions of three subunits.  相似文献   
192.
Liver hypoxia still represents an important cause of liver injury during shock and liver transplantation. We have investigated the protective effects of beta-alanine against hypoxic injury using isolated perfused rat livers and isolated rat hepatocyte suspensions. Perfusion with hypoxic Krebs-Henseleit buffer increased liver weight and caused a progressive release of lactate dehydrogenase (LDH) in the effluent perfusate. The addition of 5 mmol/l beta-alanine to the perfusion buffer completely prevented both weight increase and LDH leakage. These findings were confirmed by histological examinations showing that beta-alanine blocked the staining by trypan blue of either liver parenchymal and sinusoidal cells. Studies performed in isolated hepatocytes revealed that beta-alanine exerted its protective effects by interfering with Na+ accumulation induced by hypoxia. The addition of gamma-amino-butyric acid, which interfered with beta-alanine uptake by the hepatocytes or of Na+/H+ ionophore monensin, reverted beta-alanine protection in either hepatocyte suspensions or isolated perfused livers. We also observed that liver receiving beta-alanine were also protected against LDH leakage and weight increase caused by the perfusion with an hyposmotic (205 mosm) hypoxic buffer obtained by decreasing NaCl content from 118 to 60 mmol/l. This latter effect was not reverted by blocking K+ efflux from hepatocyte with BaCl(2) (1mmol/l). Altogether these results indicated that beta-alanine protected against hypoxic liver injury by preventing Na+ overload and by increasing liver resistance to osmotic stress consequent to the impairment of ion homeostasis during hypoxia.  相似文献   
193.
Sequence alignment of pig mitochondrial NADP-dependent isocitrate dehydrogenase with eukaryotic (human, rat, and yeast) and Escherichia coli isocitrate dehydrogenases reveals that Tyr316 is completely conserved and is equivalent to the E. coli Tyr345, which interacts with the 2'-phosphate of NADP in the crystal structure [Hurley et al., Biochemistry 30 (1991) 8671-8678]. Lys321 is also completely conserved in the five isocitrate dehydrogenases. Either an arginine or lysine residue is found among the enzymes from other species at the position corresponding to the pig enzyme Arg314. While Arg323 is not conserved among all species, its proximity to the coenzyme site makes it a good candidate for investigation. The importance of these four amino acids to the function of pig mitochondrial NADP-isocitrate dehydrogenase was studied by site-directed mutagenesis. Mutants (R314Q, Y316F, Y316L, K321Q, and R323Q) were generated by a megaprimer polymerase chain reaction method. Wild-type and mutant enzymes were expressed in E. coli and purified to homogeneity. All mutant and wild-type enzymes exhibited comparable molecular weights indicative of the dimeric enzyme. Mutations do not cause an appreciable change in enzyme secondary structure as revealed by circular dichroism measurements. The kinetic parameters (V(max) and K(M) values) of K321Q and R323Q are similar to those of wild-type, indicating that Lys321 and Arg323 are not involved in enzyme function. R314Q exhibits a 10-fold increase in K(M) for NADP as compared to that of wild-type, while they have comparable V(max) values. These results suggest that Arg314 contributes to the affinity between the enzyme and NADP. The hydroxyl group of Tyr316 is not required for enzyme function since Y316F exhibits similar kinetic parameters to those of wild-type. Y316L shows a 4-fold increase in K(M) for NADP and a decrease in V(max) as compared to wild-type, suggesting that the aromatic ring of the Tyr of isocitrate dehydrogenase contributes to the affinity for coenzyme, as well as to catalysis. The K(i) for NAD of R314Q, Y316F, and Y316L is comparable to that of wild-type, indicating that the Arg314 and Tyr316 may be located near the 2'-phosphate of enzyme-bound NADP.  相似文献   
194.
195.
A DNA microarray to monitor the expression of bacterial metabolic genes within mixed microbial communities was designed and tested. Total RNA was extracted from pure and mixed cultures containing the 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterium Ralstonia eutropha JMP134, and the inducing agent 2,4-D. Induction of the 2,4-D catabolic genes present in this organism was readily detected 4, 7, and 24 h after the addition of 2,4-D. This strain was diluted into a constructed mixed microbial community derived from a laboratory scale sequencing batch reactor. Induction of two of five 2,4-D catabolic genes (tfdA and tfdC) from populations of JMP134 as low as 10(5) cells/ml was clearly detected against a background of 10(8) cells/ml. Induction of two others (tfdB and tfdE) was detected from populations of 10(6) cells/ml in the same background; however, the last gene, tfdF, showed no significant induction due to high variability. In another experiment, the induction of resin acid degradative genes was statistically detectable in sludge-fed pulp mill effluent exposed to dehydroabietic acid in batch experiments. We conclude that microarrays will be useful tools for the detection of bacterial gene expression in wastewaters and other complex systems.  相似文献   
196.
197.
Apoptotic death of CD4+ T lymphocytes is a major cause of the immunodeficiency caused by human immunodeficiency virus (HIV), but it is still unclear how this process precisely occurs. To characterize a potentially useful cellular model, we have analyzed the tendency of chronically HIV-infected CD4+ human cell lines of different origin to undergo apoptosis. We studied ACH-2 and U1 lines, derived from the CD4+ T-cell A301 and the promonocytic U937 cell lines, respectively, and induced apoptosis via several stimuli that trigger different pathways. Their capacity to regulate plasma membrane CD95 expression and to produce soluble CD95 was also analyzed. Using staurosporine, TNF-alpha plus cycloheximide, and gamma-radiations, we observed that ACH-2 were more sensitive to programmed cell death than A301, while U1 were less sensitive than U937. Both infected cell types had a lower sensitivity to CD95-induced apoptosis; the analysis of changes in mitochondrial membrane potential corroborated these observations. Plasma membrane CD95 was similarly regulated in all cell types, which, however, presented a different capacity to produce soluble CD95 molecules. Our in vitro results may offer a new perspective for developing further studies on the pathogenesis of HIV infection. A chronically infected cell line of lymphocytic origin is more susceptible to apoptosis than its parental cell type, while infected monocytic cells are less sensitive than their uninfected counterpart. Thus, it is possible to hypothesize that one of the reasons by which circulating monocytes survive and represent a viral reservoir is the capacity of HIV to decrease the sensitivity to apoptosis of this cell type. However, further studies on ex-vivo collected fresh cells, as well as on other cell lines, are urgently needed to confirm such hypothesis.  相似文献   
198.
Disruption of the apoptotic pathways may account for resistance to chemotherapy and treatment failures in human neoplastic disease. To further evaluate this issue, we isolated a HL-60 cell clone highly resistant to several drugs inducing apoptosis and to the differentiating chemical all-trans-retinoic acid (ATRA). The resistant clone displayed an activated phosphoinositide 3-kinase (PI3K)/AKT1 pathway, with levels of phosphatidylinositol (3,4,5) trisphosphate higher than the parental cells and increased levels of both Thr 308 and Ser 473 phosphorylated AKT1. In vitro AKT1 activity was elevated in resistant cells, whereas treatment of the resistant cell clone with two inhibitors of PI3K, wortmannin or Ly294002, strongly reduced phosphatidylinositol (3,4,5) trisphosphate levels and AKT1 activity. The inhibitors reversed resistance to drugs. Resistant cells overexpressing either dominant negative PI3K or dominant negative AKT1 became sensitive to drugs and ATRA. Conversely, if parental HL-60 cells were forced to overexpress an activated AKT1, they became resistant to apoptotic inducers and ATRA. There was a tight relationship between the activation of the PI3K/AKT1 axis and the expression of c-IAP1 and c-IAP2 proteins. Activation of the PI3K/AKT1 axis in resistant cells was dependent on enhanced tyrosine phosphorylation of the p85 regulatory subunit of PI3K, conceivably due to an autocrine insulin-like growth factor-I production. Our findings suggest that an up-regulation of the PI3K/AKT1 pathway might be one of the survival mechanisms responsible for the onset of resistance to chemotherapeutic and differentiating therapy in patients with acute leukemia.  相似文献   
199.
In order to assess occupational exposure of hospital personnel involved in the preparation and administration of antineoplastic drugs, biological and environmental monitoring are essential to identify the main exposure routes and to quantify potential health risks. If workplace contamination cannot be completely avoided, it is of utmost importance to reduce exposure to the lowest possible levels. To this aim, not only do education and training of the exposed subjects play an important role, but accurate standardized sampling techniques and analytical methods are also required. A critical overview of the most significant methods available in the literature is presented and their value is discussed, especially with respect to their sensitivity and specificity. In addition, attention is given to validation procedures and, consequently, to their reliability. The results from the most important surveys carried out at hospital departments are also discussed, with a view to improving both monitoring strategies and moreover working conditions.  相似文献   
200.
Cardiac hypertrophy is an adaptive response to a variety of mechanical and hormonal stimuli, and represents an early event in the clinical course leading to heart failure. By gene inactivation, we demonstrate here a crucial role of melusin, a muscle-specific protein that interacts with the integrin beta1 cytoplasmic domain, in the hypertrophic response to mechanical overload. Melusin-null mice showed normal cardiac structure and function in physiological conditions, but when subjected to pressure overload--a condition that induces a hypertrophic response in wild-type controls--they developed an abnormal cardiac remodeling that evolved into dilated cardiomyopathy and contractile dysfunction. In contrast, the hypertrophic response was identical in wild-type and melusin-null mice after chronic administration of angiotensin II or phenylephrine at doses that do not increase blood pressure--that is, in the absence of cardiac biomechanical stress. Analysis of intracellular signaling events induced by pressure overload indicated that phosphorylation of glycogen synthase kinase-3beta (GSK-3beta) was specifically blunted in melusin-null hearts. Thus, melusin prevents cardiac dilation during chronic pressure overload by specifically sensing mechanical stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号