首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68339篇
  免费   6274篇
  国内免费   48篇
  2022年   332篇
  2021年   829篇
  2020年   548篇
  2019年   641篇
  2018年   857篇
  2017年   780篇
  2016年   1338篇
  2015年   2248篇
  2014年   2599篇
  2013年   3373篇
  2012年   4357篇
  2011年   4377篇
  2010年   2884篇
  2009年   2618篇
  2008年   3766篇
  2007年   4021篇
  2006年   3851篇
  2005年   3609篇
  2004年   3589篇
  2003年   3474篇
  2002年   3273篇
  2001年   717篇
  2000年   519篇
  1999年   808篇
  1998年   967篇
  1997年   690篇
  1996年   631篇
  1995年   629篇
  1994年   592篇
  1993年   636篇
  1992年   592篇
  1991年   517篇
  1990年   508篇
  1989年   493篇
  1988年   487篇
  1987年   472篇
  1986年   473篇
  1985年   543篇
  1984年   646篇
  1983年   598篇
  1982年   713篇
  1981年   774篇
  1980年   726篇
  1979年   450篇
  1978年   489篇
  1977年   469篇
  1976年   430篇
  1975年   381篇
  1974年   428篇
  1973年   379篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Electrical stimulation of the nervous system for therapeutic purposes, such as deep brain stimulation in the treatment of Parkinson’s disease, has been used for decades. Recently, increased attention has focused on using microstimulation to restore functions as diverse as somatosensation and memory. However, how microstimulation changes the neural substrate is still not fully understood. Microstimulation may cause cortical changes that could either compete with or complement natural neural processes, and could result in neuroplastic changes rendering the region dysfunctional or even epileptic. As part of our efforts to produce neuroprosthetic devices and to further study the effects of microstimulation on the cortex, we stimulated and recorded from microelectrode arrays in the hand area of the primary somatosensory cortex (area 1) in two awake macaque monkeys. We applied a simple neuroprosthetic microstimulation protocol to a pair of electrodes in the area 1 array, using either random pulses or pulses time-locked to the recorded spiking activity of a reference neuron. This setup was replicated using a computer model of the thalamocortical system, which consisted of 1980 spiking neurons distributed among six cortical layers and two thalamic nuclei. Experimentally, we found that spike-triggered microstimulation induced cortical plasticity, as shown by increased unit-pair mutual information, while random microstimulation did not. In addition, there was an increased response to touch following spike-triggered microstimulation, along with decreased neural variability. The computer model successfully reproduced both qualitative and quantitative aspects of the experimental findings. The physiological findings of this study suggest that even simple microstimulation protocols can be used to increase somatosensory information flow.  相似文献   
52.
Saturation and competitive binding analyses demonstrated the presence of a high affinity (KD = 0.92 nM), specific antiestrogen binding site (AEBS) in rat liver microsomes and at least 75% of total liver AEBS was recovered in this fraction. When microsomes were further separated into smooth and rough fractions, AEBS was concentrated in the latter. Subsequent dissociation of ribosomes from the rough membranes revealed that AEBS was associated with the membrane and not the ribosomal fraction. Antiestrogen binding activity could not be extracted from membranes with 1 M KCl or 0.5 M acetic acid but could be solubilized with sodium cholate. These data indicate that AEBS is an integral membrane component of the rough microsomal fraction of rat liver.  相似文献   
53.
It has been shown that lens regeneration from the iris of the newt Notophthalmus viridescens is dependent on the presence of neural retinal tissue in organ culture and in vivo. The recent discovery of various eye-derived growth factors (EDGFs) in the bovine retina [14] prompted us to investigate whether one of these factors may be involved in the stimulation of lens regeneration. Dorsal irises were cultured for 20 days in serum-supplemented diluted Eagle's medium. Growth factors from bovine retina of various degrees of purification were added. Lens regeneration was assessed on the basis of morphological lens-regeneration stages and by immunofluorescent detection of a lens-specific marker protein, alpha-crystallin. Crude isotonic retinal extract at 80-800 micrograms/ml significantly augmented lens regeneration. Very similar results were obtained when EDGF III, the nonretained retinal factor after heparin-affinity chromatography, was present at 2-20 micrograms/ml. Lens regeneration was also significantly increased when EDGF II, the retinal form of acidic fibroblast growth factor (aFGF) at 50-500 ng/ml was added to the cultures. On the other hand, EDGF I at 4-40 ng/ml and brain basic FGF at 5-50 ng/ml did not seem to significantly stimulate lens regeneration under the conditions used. Our results suggest that at least two retina-derived growth factors (EDGF II and III) can stimulate lens regeneration. These growth factors may be the putative signal that is naturally produced by the retina during lens regeneration in the newt.  相似文献   
54.
Inhibitors of eucaryotes (cycloheximide and amphotericin B) and procaryotes (penicillin and chloramphenicol) were used to estimate bacterivory and bacterial production in a eutrophic lake. Bacterial production appeared to be slightly greater than protozoan grazing in the aerobic waters of Lake Oglethorpe. Use of penicillin and cycloheximide yielded inconsistent results in anaerobic water and in aerobic water when bacterial production was low. Production measured by inhibiting eucaryotes with cycloheximide did not always agree with [3H]thymidine estimates or differential filtration methods. Laboratory experiments showed that several common freshwater protozoans continued to swim and ingest bacterium-size latex beads in the presence of the eucaryote inhibitor. Penicillin also affected grazing rates of some ciliates. We recommend that caution and a corroborating method be used when estimating ecologically important parameters with specific inhibitors.  相似文献   
55.
56.
57.
58.
59.
Primates     
  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号