首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64469篇
  免费   4480篇
  国内免费   35篇
  68984篇
  2022年   411篇
  2021年   775篇
  2020年   513篇
  2019年   620篇
  2018年   775篇
  2017年   708篇
  2016年   1252篇
  2015年   2084篇
  2014年   2391篇
  2013年   3115篇
  2012年   4039篇
  2011年   4013篇
  2010年   2670篇
  2009年   2446篇
  2008年   3494篇
  2007年   3701篇
  2006年   3561篇
  2005年   3300篇
  2004年   3319篇
  2003年   3225篇
  2002年   3002篇
  2001年   648篇
  2000年   442篇
  1999年   721篇
  1998年   885篇
  1997年   640篇
  1996年   585篇
  1995年   573篇
  1994年   551篇
  1993年   594篇
  1992年   547篇
  1991年   462篇
  1990年   452篇
  1989年   444篇
  1988年   444篇
  1987年   437篇
  1986年   440篇
  1985年   499篇
  1984年   612篇
  1983年   556篇
  1982年   671篇
  1981年   725篇
  1980年   678篇
  1979年   414篇
  1978年   460篇
  1977年   450篇
  1976年   391篇
  1975年   345篇
  1974年   406篇
  1973年   353篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
851.
852.
Recent reports have revealed that the asymmetric nature of the nuclear genome of somatic hybrids, produced following the irradiation of one of the parents with X- or gamma rays, is generally much less than had been anticipated. As a consequence, we have begun to investigate whether UV radiation might be used as an alternative or indeed a supplement to the presently-used ionising radiation techniques in such experiments. Cell culture studies have revealed that UV radiation induces the desired physiological effects in sugar beet ( Beta vulgaris ) protoplasts, namely, a prevention of cell division without immediate cytotoxicity. Preliminary studies using denaturing and pulsed field gel electrophoresis have shown that UV can also induce substantial physical fragmentation of DNA. When using the same techniques, less breakdown was observed following gamma radiation. All results were highly reproducible. Such results augur well for the potential use of UV in asymmetric somatic cell fusion experiments.  相似文献   
853.
Four saccharinate complexes of divalent transition metals with 2,2′:6,2″-terpyridine (terpy) as a co-ligand have been synthesised, and characterised by elemental analysis and single crystal X-ray diffraction at low temperature. The complexes [M(terpy)(sac)(H2O)2] sac · H2O (1, M = Mn; 2, M = Co; 3, M = Ni) are isostructural, crystallising in space group Pbca. The metal ions have approximately octahedral coordination, with the two coordinated water molecules occupying cis-positions. These water molecules are hydrogen-bonded to the oxygen atom in the free water molecule. The copper(II) ion in the anhydrous complex [Cu(terpy)(sac)2] 4 is five-coordinate; the compound crystallises in the space group P2(1)/c.  相似文献   
854.
Enteropathogenic Escherichia coli employs a filamentous type III secretion system, made by homopolymerization of the translocator protein EspA. In this study, we have shown that the N-terminal region of EspA has a role in EspA's protein stability, interaction with the CesAB chaperone, and filament biogenesis and function.  相似文献   
855.
Nitrite reductases are key enzymes that perform the first committed step in the denitrification process and reduce nitrite to nitric oxide. In copper nitrite reductases, an electron is delivered from the type 1 copper (T1Cu) centre to the type 2 copper (T2Cu) centre where catalysis occurs. Despite significant structural and mechanistic studies, it remains controversial whether the substrates, nitrite, electron and proton are utilised in an ordered or random manner. We have used crystallography, together with online X-ray absorption spectroscopy and optical spectroscopy, to show that X-rays rapidly and selectively photoreduce the T1Cu centre, but that the T2Cu centre does not photoreduce directly over a typical crystallographic data collection time. Furthermore, internal electron transfer between the T1Cu and T2Cu centres does not occur, and the T2Cu centre remains oxidised. These data unambiguously demonstrate an ‘ordered’ mechanism in which electron transfer is gated by binding of nitrite to the T2Cu. Furthermore, the use of online multiple spectroscopic techniques shows their value in assessing radiation-induced redox changes at different metal sites and demonstrates the importance of ensuring the correct status of redox centres in a crystal structure determination. Here, optical spectroscopy has shown a very high sensitivity for detecting the change in T1Cu redox state, while X-ray absorption spectroscopy has reported on the redox status of the T2Cu site, as this centre has no detectable optical absorption.  相似文献   
856.
857.
The ADP-ribosyltransferases are a class of enzymes that display activity in a variety of bacterial pathogens responsible for causing diseases in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report the characterization of a novel toxin from Vibrio cholerae, which we call cholix toxin. The toxin is active against mammalian cells (IC(50) = 4.6 +/- 0.4 ng/ml) and crustaceans (Artemia nauplii LD(50) = 10 +/- 2 mug/ml). Here we show that this toxin is the third member of the diphthamide-specific class of ADP-ribose transferases and that it possesses specific ADP-ribose transferase activity against ribosomal eukaryotic elongation factor 2. We also describe the high resolution crystal structures of the multidomain toxin and its catalytic domain at 2.1- and 1.25-A resolution, respectively. The new structural data show that cholix toxin possesses the necessary molecular features required for infection of eukaryotes by receptor-mediated endocytosis, translocation to the host cytoplasm, and inhibition of protein synthesis by specific modification of elongation factor 2. The crystal structures also provide important insight into the structural basis for activation of toxin ADP-ribosyltransferase activity. These results indicate that cholix toxin may be an important virulence factor of Vibrio cholerae that likely plays a significant role in the survival of the organism in an aquatic environment.  相似文献   
858.
The fully executed epidermal growth factor receptor (EGFR)/Ras/MEK/ERK pathway serves a pro-survival role in renal epithelia under moderate oxidative stress. We and others have demonstrated that during severe oxidative stress, however, the activated EGFR is disconnected from ERK activation in cultured renal proximal tubule cells and also in renal proximal tubules after ischemia/reperfusion injury, resulting in necrotic death. Studies have shown that the tyrosine-phosphorylated p46/52 isoforms of the ShcA family of adaptor proteins connect the activated EGFR to activation of Ras and ERK, whereas the p66(shc) isoform can inhibit this p46/52(shc) function. Here, we determined that severe oxidative stress (after a brief period of activation) terminates activation of the Ras/MEK/ERK pathway, which coincides with ERK/JNK-dependent Ser(36) phosphorylation of p66(shc). Isoform-specific knockdown of p66(shc) or mutation of Ser(36) to Ala, but not to Asp, attenuated severe oxidative stress-mediated ERK inhibition and cell death in vitro. Also, severe oxidative stress (unlike ligand stimulation and moderate oxidative stress, both of which support survival) increased binding of p66(shc) to the activated EGFR and Grb2. This binding dissociated the SOS1 adaptor protein from the EGFR-recruited signaling complex, leading to termination of Ras/MEK/ERK activation. Notably, Ser(36) phosphorylation of p66(shc) and its increased binding to the EGFR also occurred in the kidney after ischemia/reperfusion injury in vivo. At the same time, SOS1 binding to the EGFR declined, similar to the in vitro findings. Thus, the mechanism we propose in vitro offers a means to ameliorate oxidative stress-induced cell injury by either inhibiting Ser(36) phosphorylation of p66(shc) or knocking down p66(shc) expression in vivo.  相似文献   
859.
In previous crop rotation research, adult emergence traps placed in plots planted to Cuphea PSR-23 (a selected cross of Cuphea viscosissma Jacq. and Cuphea lanceolata Ait.) caught high numbers of adult western corn rootworms, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), suggesting that larvae may have completed development on this broadleaf plant. Because of this observation, a series of greenhouse and field experiments were conducted to test the hypothesis that Cuphea could serve as a host for larval development. Greenhouse-grown plants infested with neonates of a colonized nondiapausing strain of the beetle showed no survival of larvae on Cuphea, although larvae did survive on the positive control (corn, Zea mays L.) and negative control [sorghum, Sorghum bicolor (L.) Moench] plants. Soil samples collected 20 June, 7 July, and 29 July 2005 from field plots planted to Cuphea did not contain rootworm larvae compared with means of 1.28, 0.22, and 0.00 rootworms kg(-1) soil, respectively, for samples collected from plots planted to corn. Emergence traps captured a peak of eight beetles trap(-1) day(-1) from corn plots on 8 July compared with a peak of 0.5 beetle trap(-1) day(-1) on 4 August from Cuphea plots. Even though a few adult beetles were again captured in the emergence traps placed in the Cuphea plots, it is not thought to be the result of successful larval development on Cuphea roots. All the direct evidence reported here supports the conventional belief that rootworm larvae do not survive on broadleaf plants, including Cuphea.  相似文献   
860.
Swift RV  McCammon JA 《Biochemistry》2008,47(13):4102-4111
The addition of a N7-methyl guanosine cap to the 5' end of nascent mRNA is carried out by the mRNA-capping enzyme, a two-domain protein that is a member of the nucleotidyltransferase superfamily. The mRNA-capping enzyme is composed of a catalytic nucleotidyltransferase domain and a noncatalytic oligonucleotide/oligosaccharide binding (OB) domain. Large-scale domain motion triggered by substrate binding mediates catalytically requisite conformational rearrangement of the GTP substrate prior to the chemical step. In this study, we employ targeted molecular dynamics (TMD) on the PBCV-1 capping enzyme to probe the global domain dynamics and internal dynamics of conserved residues during the conformational transformation from the open to the closed state. Analysis of the resulting trajectories along with structural and sequence homology to other members of the superfamily allows us to suggest a conserved mechanism of conformational rearrangements spanning all mRNA-capping enzymes and all ATP-dependent DNA ligases. Our results suggest that the OB domain moves quasi-statically toward the nucleotidyltransferase domain, pivoting about a short linker region. The approach of the OB domain brings a conserved RxDK sequence, an element of conserved motif VI, within proximity of the triphosphate of GTP, destabilizing the unreactive conformation and thereby allowing thermal fluctuations to partition the substrate toward the catalytically competent state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号