首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126615篇
  免费   11113篇
  国内免费   46篇
  2022年   576篇
  2021年   1263篇
  2020年   895篇
  2019年   1010篇
  2018年   1986篇
  2017年   1947篇
  2016年   2627篇
  2015年   3344篇
  2014年   3898篇
  2013年   5693篇
  2012年   8147篇
  2011年   8562篇
  2010年   5036篇
  2009年   4037篇
  2008年   7276篇
  2007年   7506篇
  2006年   7084篇
  2005年   6547篇
  2004年   6446篇
  2003年   6166篇
  2002年   5932篇
  2001年   2936篇
  2000年   3010篇
  1999年   2116篇
  1998年   1534篇
  1997年   1166篇
  1996年   1200篇
  1995年   1097篇
  1994年   1088篇
  1993年   1085篇
  1992年   1218篇
  1991年   1039篇
  1990年   1010篇
  1989年   958篇
  1988年   926篇
  1987年   928篇
  1986年   899篇
  1985年   1029篇
  1984年   1198篇
  1983年   1060篇
  1982年   1180篇
  1981年   1198篇
  1980年   1075篇
  1979年   846篇
  1978年   845篇
  1977年   817篇
  1976年   744篇
  1975年   769篇
  1974年   761篇
  1973年   685篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
Summary The development of the microflora during the humification of grape pulp has been investigated by the determination of ATP using the bioluminescence technique. Several extraction methods were tested including the use of dimethylsulphoxide, trichloroacetic acid, grinding and ultrasonification. Dimethylsulphoxide and ultrasonification for 15 sec appeared to be the most effective. The ATP extract was stabilized when it was mixed with 0.75 mM glycine, 4.4 mM Mg-EDTA, pH 7.5 and frozen. The relative error of the ATP assay by bioluminescence did not exceed 6.5%. This method allowed us to show that at least five distinct reproducible microbial phases exist during grape pulp humification. These results show that the microbial biomass changes noticeably and at distinct times during composting.  相似文献   
62.
63.
64.
The 231-residue capsid (CA) protein of human immunodeficiency virus type 1 (HIV-1) spontaneously self-assembles into tubes with a hexagonal lattice that is believed to mimic the surface lattice of conical capsid cores within intact virions. We report the results of solid-state nuclear magnetic resonance (NMR) measurements on HIV-1 CA tubes that provide new information regarding changes in molecular structure that accompany CA self-assembly, local dynamics within CA tubes, and possible mechanisms for the generation of lattice curvature. This information is contained in site-specific assignments of signals in two- and three-dimensional solid-state NMR spectra, conformation-dependent 15N and 13C NMR chemical shifts, detection of highly dynamic residues under solution NMR conditions, measurements of local variations in transverse spin relaxation rates of amide 1H nuclei, and quantitative measurements of site-specific 15N–15N dipole–dipole couplings. Our data show that most of the CA sequence is conformationally ordered and relatively rigid in tubular assemblies and that structures of the N-terminal domain (NTD) and the C-terminal domain (CTD) observed in solution are largely retained. However, specific segments, including the N-terminal β-hairpin, the cyclophilin A binding loop, the inter-domain linker, segments involved in intermolecular NTD–CTD interactions, and the C-terminal tail, have substantial static or dynamical disorder in tubular assemblies. Other segments, including the 310-helical segment in CTD, undergo clear conformational changes. Structural variations associated with curvature of the CA lattice appear to be localized in the inter-domain linker and intermolecular NTD–CTD interface, while structural variations within NTD hexamers, around local 3-fold symmetry axes, and in CTD–CTD dimerization interfaces are less significant.  相似文献   
65.
The bacterial flagellum is composed of more than 20 different proteins. The filament, which constitutes the major extracellular part of the flagellum, is built up of approximately 20,000 FliC molecules that assemble at the growing distal end of the filament. A capping structure composed of five FliD molecules located at the tip of the filament promotes polymerization of FliC. Lack of FliD leads to release of the subunits into the growth medium. We show here that FliD can be successfully used in bacterial surface display. We tested various insertion sites in the capping protein, and the optimal region for display was at the variable region in FliD. Deletion and/or insertion at other sites resulted in decreased formation of flagella. We further developed the technique into a multihybrid display system in which three foreign peptides are simultaneously expressed within the same flagellum, i.e., D repeats of FnBPA from Staphylococcus aureus at the tip and fragments of YadA from Yersinia enterocolitica as well as SlpA from Lactobacillus crispatus along the filament. This technology can have biotechnological applications, e.g., in simultaneous delivery of several effector molecules.  相似文献   
66.
DNA was efficiently and quantitatively isolated from extremely small quantities of mycelia (0.1–10 mg) of different phytopathogenic moulds by grinding freeze-dried mycelia with glass beads and then using a commercial DNA extraction kit. The efficiency of disruption of the mycelia and the quantitative DNA extraction was proved by microscopy and the quantification of isolated DNA by real time PCR. Presented at the 27th Mykotoxin-Workshop, Dortmund, Germany, June 13–15, 2005 Financial support: German Research Foundation (DFG grant Pr 708/2). J.M. thanks the Cusanuswerk for a doctoral scholarship  相似文献   
67.
Climate-driven increases in wildfires, drought conditions, and insect outbreaks are critical threats to forest carbon stores. In particular, bark beetles are important disturbance agents although their long-term interactions with future climate change are poorly understood. Droughts and the associated moisture deficit contribute to the onset of bark beetle outbreaks although outbreak extent and severity is dependent upon the density of host trees, wildfire, and forest management. Our objective was to estimate the effects of climate change and bark beetle outbreaks on ecosystem carbon dynamics over the next century in a western US forest. Specifically, we hypothesized that (a) bark beetle outbreaks under climate change would reduce net ecosystem carbon balance (NECB) and increase uncertainty and (b) these effects could be ameliorated by fuels management. We also examined the specific tree species dynamics—competition and release—that determined NECB response to bark beetle outbreaks. Our study area was the Lake Tahoe Basin (LTB), CA and NV, USA, an area of diverse forest types encompassing steep elevation and climatic gradients and representative of mixed-conifer forests throughout the western United States. We simulated climate change, bark beetles, wildfire, and fuels management using a landscape-scale stochastic model of disturbance and succession. We simulated the period 2010–2100 using downscaled climate projections. Recurring droughts generated conditions conducive to large-scale outbreaks; the resulting large and sustained outbreaks significantly increased the probability of LTB forests becoming C sources over decadal time scales, with slower-than-anticipated landscape-scale recovery. Tree species composition was substantially altered with a reduction in functional redundancy and productivity. Results indicate heightened uncertainty due to the synergistic influences of climate change and interacting disturbances. Our results further indicate that current fuel management practices will not be effective at reducing landscape-scale outbreak mortality. Our results provide critical insights into the interaction of drivers (bark beetles, wildfire, fuel management) that increase the risk of C loss and shifting community composition if bark beetle outbreaks become more frequent.  相似文献   
68.
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号