首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13980篇
  免费   1350篇
  国内免费   10篇
  15340篇
  2024年   16篇
  2023年   110篇
  2022年   264篇
  2021年   586篇
  2020年   266篇
  2019年   331篇
  2018年   393篇
  2017年   333篇
  2016年   590篇
  2015年   927篇
  2014年   922篇
  2013年   1055篇
  2012年   1356篇
  2011年   1307篇
  2010年   769篇
  2009年   619篇
  2008年   838篇
  2007年   800篇
  2006年   787篇
  2005年   624篇
  2004年   566篇
  2003年   504篇
  2002年   461篇
  2001年   92篇
  2000年   54篇
  1999年   79篇
  1998年   92篇
  1997年   46篇
  1996年   60篇
  1995年   29篇
  1994年   42篇
  1993年   43篇
  1992年   45篇
  1991年   27篇
  1990年   32篇
  1989年   26篇
  1987年   15篇
  1986年   11篇
  1985年   20篇
  1984年   22篇
  1983年   12篇
  1982年   12篇
  1981年   13篇
  1980年   12篇
  1979年   13篇
  1978年   14篇
  1977年   13篇
  1975年   10篇
  1974年   9篇
  1973年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Subpopulations of Kenyon cells, the intrinsic neurons of the insect mushroom bodies, are typically sequentially generated by dedicated neuroblasts that begin proliferating during embryogenesis. When present, Class III Kenyon cells are thought to be the first born population of neurons by virtue of the location of their cell somata, farthest from the position of the mushroom body neuroblasts. In the adult tobacco hornworm moth Manduca sexta, the axons of Class III Kenyon cells form a separate Y tract and dorsal and ventral lobelet; surprisingly, these distinctive structures are absent from the larval Manduca mushroom bodies. BrdU labeling and immunohistochemical staining reveal that Class III Kenyon cells are in fact born in the mid-larval through adult stages. The peripheral position of their cell bodies is due to their genesis from two previously undescribed protocerebral neuroblasts distinct from the mushroom body neuroblasts that generate the other Kenyon cell types. These findings challenge the notion that all Kenyon cells are produced solely by the mushroom body neuroblasts, and may explain why Class III Kenyon cells are found sporadically across the insects, suggesting that when present, they may arise through de novo recruitment of neuroblasts outside of the mushroom bodies. In addition, lifelong neurogenesis by both the Class III neuroblasts and the mushroom body neuroblasts was observed, raising the possibility that adult neurogenesis may play a role in mushroom body function in Manduca.  相似文献   
993.
Research on animal microbiomes is increasingly aimed at determining the evolutionary and ecological factors that govern host–microbiome dynamics, which are invariably intertwined and potentially synergistic. We present three empirical studies related to this topic, each of which relies on the diversity of Malagasy lemurs (representing a total of 19 species) and the comparative approach applied across scales of analysis. In Study 1, we compare gut microbial membership across 14 species in the wild to test the relative importance of host phylogeny and feeding strategy in mediating microbiome structure. Whereas host phylogeny strongly predicted community composition, the same feeding strategies shared by distant relatives did not produce convergent microbial consortia, but rather shaped microbiomes in host lineage‐specific ways, particularly in folivores. In Study 2, we compare 14 species of wild and captive folivores, frugivores, and omnivores, to highlight the importance of captive populations for advancing gut microbiome research. We show that the perturbational effect of captivity is mediated by host feeding strategy and can be mitigated, in part, by modified animal management. In Study 3, we examine various scent‐gland microbiomes across three species in the wild or captivity and show them to vary by host species, sex, body site, and a proxy of social status. These rare data provide support for the bacterial fermentation hypothesis in olfactory signal production and implicate steroid hormones as mediators of microbial community structure. We conclude by discussing the role of scale in comparative microbial studies, the links between feeding strategy and host–microbiome coadaptation, the underappreciated benefits of captive populations for advancing conservation research, and the need to consider the entirety of an animal's microbiota. Ultimately, these studies will help move the field from exploratory to hypothesis‐driven research.  相似文献   
994.
995.
Mycoplasma suis belongs to the hemotrophic mycoplasmas that are associated with acute and chronic anemia in a wide range of livestock and wild animals. The inability to culture M. suis in vitro has hindered its characterization at the molecular level. Since the publication of M. suis genome sequences in 2011 only one proteome study has been published. Aim of the presented study was to significantly extend the proteome coverage of M. suis strain KI_3806 during acute infection by applying three different protein extraction methods followed by 1D SDS‐PAGE and LC‐MS/MS. A total of 404 of 795 M. suis KI_3806 proteins (50.8%) were identified. Data analysis revealed the expression of 83.7% of the predicted ORFs with assigned functions but also highlights the expression of 179 of 523 (34.2%) hypothetical proteins with unknown functions. Computational analyses identified expressed membrane‐associated hypothetical proteins that might be involved in adhesion or host–pathogen interaction. Furthermore, analyses of the expressed proteins indicated the existence of a hexose‐6‐phosphate‐transporter and an ECF transporter. In conclusion, our proteome study provides a further step toward the elucidation of the unique life cycle of M. suis and the establishment of an in vitro culture. All MS data have been deposited in the ProteomeXchange with identifier PXD002294 ( http://proteomecentral.proteomexchange.org/dataset/PXD002294 ).  相似文献   
996.
997.
Amplification of host-specific markers from Bacteroidales faecal anaerobes can rapidly identify the source of faecal pollution. It is necessary to understand persistence and survival of these markers and marker cells, both to interpret quantitative source-tracking data, and to use such data to predict pathogen occurrence. We measured marker persistence and cell survival of two human (HF134, HF183) and two ruminant (CF128, CF193) faecal Bacteroidales markers, compared with Escherichia coli and enterococci. Freshwater microcosms were inoculated with fresh cattle or human faeces and incubated at 13°C in natural light or darkness. Marker persistence was measured by polymerase chain reaction (PCR) and quantitative PCR. Survival of marker cells was measured by real-time quantitative PCR. There was no difference in persistence between the two human-specific Bacteroidales DNA markers in the light and dark microcosms. Cell survival profiles of the two human markers were also similar; both were significantly affected by light. Ruminant markers persisted and survived longer than human markers (14 versus 6 days respectively). CF193 decreased more rapidly than CF128, and light significantly affected CF128 but not CF193. These results support use of host-specific faecal Bacteroidales markers as indicators of recent faecal pollution, but suggest that caution is needed in interpreting quantitative results to indicate proportional contribution of different sources, as individual markers differ in their survival, persistence and response to environmental variables. The survival and persistence profiles for Bacteroidales markers are consistent with survival profiles for several faecal pathogens.  相似文献   
998.

Background  

The advancement of gene silencing via RNA interference is limited by the lack of effective short interfering RNA (siRNA) delivery vectors. Rational design of polymeric carriers has been complicated by the fact that most chemical modifications affect multiple aspects of the delivery process. In this work, the extent of primary amine acetylation of generation 5 poly(amidoamine) (PAMAM) dendrimers was studied as a modification for the delivery of siRNA to U87 malignant glioma cells.  相似文献   
999.
How a committed cell can be reverted to an undifferentiated state is a central question in stem cell biology. This process, called dedifferentiation, is likely to be important for replacing stem cells as they age or get damaged. Tremendous progress has been made in understanding this fundamental process, but its mechanisms are poorly understood. Here we demonstrate that the aberrant activation of Ras-ERK MAPK signaling promotes cellular dedifferentiation in the Caenorhabditis elegans germline. To activate signaling, we removed two negative regulators, the PUF-8 RNA-binding protein and LIP-1 dual specificity phosphatase. The removal of both of these two regulators caused secondary spermatocytes to dedifferentiate and begin mitotic divisions. Interestingly, reduction of Ras-ERK MAPK signaling, either by mutation or chemical inhibition, blocked the initiation of dedifferentiation. By RNAi screening, we identified RSKN-1/P90(RSK) as a downstream effector of MPK-1/ERK that is critical for dedifferentiation: rskn-1 RNAi suppressed spermatocyte dedifferentiation and instead induced meiotic divisions. These regulators are broadly conserved, suggesting that similar molecular circuitry may control cellular dedifferentiation in other organisms, including humans.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号