首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   453篇
  免费   35篇
  488篇
  2022年   4篇
  2021年   12篇
  2020年   11篇
  2019年   11篇
  2018年   13篇
  2017年   10篇
  2016年   12篇
  2015年   18篇
  2014年   23篇
  2013年   19篇
  2012年   35篇
  2011年   31篇
  2010年   16篇
  2009年   19篇
  2008年   24篇
  2007年   17篇
  2006年   26篇
  2005年   18篇
  2004年   15篇
  2003年   13篇
  2002年   13篇
  2001年   6篇
  2000年   12篇
  1999年   9篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   6篇
  1989年   5篇
  1988年   7篇
  1987年   6篇
  1986年   3篇
  1984年   5篇
  1983年   3篇
  1981年   4篇
  1980年   5篇
  1979年   2篇
  1977年   6篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1970年   2篇
  1969年   3篇
排序方式: 共有488条查询结果,搜索用时 15 毫秒
481.
482.
483.
484.
Several studies have highlighted the potential risk to nontarget wildlife associated with accidental exposure to vertebrate control agents. In order to provide information that may assist in the mitigation of this problem, we questioned 215 gamekeepers in Great Britain about the use of vertebrate control agents on the land for which they were responsible. Fumigants were used to control Rabbits Oryctolagus cuniculus by 59% of gamekeepers. Use of fumigants was more common than on farms in general. 91% of gamekeepers reported the use of rodenticides, 95% of which were anticoagulants. Patterns of rodenticide use were similar to those on arable farms, though chlorophacinone and warfarin were used more commonly on game estates. Future studies of the exposure of nontarget wildlife to anticoagulants should be expanded to include these compounds. Rodenticides were apparently used in accordance with label recommendations in most cases. However, better information and guidelines for users may improve standards of agent application and reduce potential risks to nontarget wildlife.  相似文献   
485.
The classification of species belonging to the genus Candida Berkhout is problematic. Therefore, we have determined the small ribosomal subunit RNA (srRNA) sequences of the type strains of three human pathogenic Candida species; Candida krusei, C. lusitaniae and C. tropicalis. The srRNA sequences were aligned with published eukaryotic srRNA sequences and evolutionary trees were inferred using a matrix optimization method. An evolutionary tree comprising all available eukaryotic srRNA sequences, including two other pathogenic Candida species, C. albicans and C. glabrata, showed that the yeasts diverge rather late in the course of eukaryote evolution, namely at the same depth as green plants, ciliates and some smaller taxa. The cluster of the higher fungi consists of 10 ascomycetes and ascomycete-like species with the first branches leading to Neurospora crassa, Pneumocystis carinii, Candida lusitaniae and C. krusei, in that order. Next there is a dichotomous divergence leading to a group consisting of Torulaspora delbrueckii, Saccharomyces cerevisiae, C. glabrata and Kluyveromyces lactis and a smaller group comprising C. tropicalis and C. albicans. The divergence pattern obtained on the basis of srRNA sequence data is also compared to various other chemotaxonomic data.  相似文献   
486.
  1. Stable isotope mixing models (SIMMs) are widely used for characterizing wild animal diets. Such models rely upon using accurate trophic discrimination factors (TDFs) to account for the digestion, incorporation, and assimilation of food. Existing methods to calculate TDFs rely on controlled feeding trials that are time-consuming, often impractical for the study taxon, and may not reflect natural variability of TDFs present in wild populations.
  2. We present TDFCAM as an alternative approach to estimating TDFs in wild populations, by using high-precision diet estimates from a secondary methodological source—in this case nest cameras—in lieu of controlled feeding trials, and provide a framework for how and when it should be applied.
  3. In this study, we evaluate the TDFCAM approach in three datasets gathered on wild raptor nestlings (gyrfalcons Falco rusticolus; peregrine falcons Falco perigrinus; common buzzards Buteo buteo) comprising contemporaneous δ13C & δ15N stable isotope data and high-quality nest camera dietary data. We formulate Bayesian SIMMs (BSIMMs) incorporating TDFs from TDFCAM and analyze their agreement with nest camera data, comparing model performance with those based on other relevant TDFs. Additionally, we perform sensitivity analyses to characterize TDFCAM variability, and identify ecological and physiological factors contributing to that variability in wild populations.
  4. Across species and tissue types, BSIMMs incorporating a TDFCAM outperformed any other TDF tested, producing reliable population-level estimates of diet composition. We demonstrate that applying this approach even with a relatively low sample size (n < 10 individuals) produced more accurate estimates of trophic discrimination than a controlled feeding study conducted on the same species. Between-individual variability in TDFCAM estimates for ∆13C & ∆15 N increased with analytical imprecision in the source dietary data (nest cameras) but was also explained by natural variables in the study population (e.g., nestling nutritional/growth status and dietary composition).
  5. TDFCAM is an effective method of estimating trophic discrimination in wild animal populations. Here, we use nest cameras as source dietary data, but this approach is applicable to any high-accuracy method of measuring diet, so long as diet can be monitored over an interval contemporaneous with a tissue's isotopic turnover rate.
  相似文献   
487.
488.
  1. Invasive alien species and climate change are two of the most serious global environmental threats. In particular, it is of great interest to understand how changing climates could impact the distribution of invaders that pose serious threats to ecosystems and human activities.
  2. In this study, we developed ensemble species distribution models for predicting the current and future global distribution of the signal crayfish Pacifastacus leniusculus and the red swamp crayfish Procambarus clarkii, two of the most highly problematic invaders of freshwater ecosystems worldwide. We collected occurrence records of the species, from native and alien established ranges worldwide. These records in combination with averaged observations of current climatic conditions were used to calibrate a set of 10 distinct correlative models for estimating the climatic niche of each species. We next projected the estimated niches into the geographical space for the current climate conditions and for the 2050s and 2070s under representative concentration pathway 2.6 and 8.5 scenarios.
  3. Our species distribution models had high predictive abilities and suggest that annual mean temperature is the main driver of the distribution of both species. Model predictions indicated that the two crayfish species have not fully occupied their suitable climates and will respond differently to future climate scenarios in different geographic regions. Suitable climate for P. leniusculus was predicted to shift poleward and to increase in extent in North America and Europe but decrease in Asia. Regions with suitable climate for P. clarkii are predicted to widen in Europe but contract in North America and Asia.
  4. This study highlights that invasive species with different thermal preference are likely to respond differently to future climate changes. Our results provide important information for policy makers to design and implement anticipated measures for the prevention and control of these two problematic species.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号