首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   516篇
  免费   30篇
  546篇
  2023年   3篇
  2021年   2篇
  2018年   10篇
  2016年   5篇
  2015年   18篇
  2014年   13篇
  2013年   30篇
  2012年   27篇
  2011年   37篇
  2010年   11篇
  2009年   12篇
  2008年   23篇
  2007年   26篇
  2006年   21篇
  2005年   18篇
  2004年   20篇
  2003年   13篇
  2002年   22篇
  2001年   17篇
  2000年   21篇
  1999年   12篇
  1998年   6篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1994年   6篇
  1993年   4篇
  1992年   11篇
  1991年   4篇
  1990年   10篇
  1989年   8篇
  1988年   11篇
  1987年   13篇
  1986年   7篇
  1985年   16篇
  1984年   8篇
  1983年   11篇
  1982年   4篇
  1981年   5篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   5篇
  1974年   4篇
  1973年   4篇
  1972年   4篇
  1971年   2篇
  1970年   4篇
  1969年   2篇
排序方式: 共有546条查询结果,搜索用时 0 毫秒
11.
Presenilin (PS) proteins control the proteolytic cleavage that precedes nuclear access of the Notch intracellular domain. Here we observe that a partial activation of the HES1 promoter can be detected in PS1/PS2 (PS1/2) double null cells using Notch1 Delta E constructs or following Delta 1 stimulation, despite an apparent abolition of the production and nuclear accumulation of the Notch intracellular domain. PS1/2-independent Notch activation is sensitive to Numblike, a physiological inhibitor of Notch. PS1/2-independent Notch signaling is also inhibited by an active gamma-secretase inhibitor in the low micromolar range and is not inhibited by an inactive analogue, similar to PS-dependent Notch signaling. However, experiments using a Notch1-Gal4-VP16 fusion protein indicate that the PS1/2-independent activity does not release Gal4-VP16 and is therefore unlikely to proceed via an intramembranous cleavage. These data reveal that a novel PS1/2-independent mechanism plays a partial role in Notch signal transduction.  相似文献   
12.
The activities of acid and alkaline phosphatases were localized by enzyme histochemistry in the chondroepiphyses of 5 week old rabbits. Using paraformaldehyde-lysine-periodate as fixative, the activity of acid phosphatase was particularly well preserved and could be demonstrated not only in osteoclasts, but also in chondrocytes as well as in the cartilage and early endochondral matrices. The acid phosphatase in the chondrocytes and the matrix was tartrate-resistant, but inhibited by 2mM sodium fluoride, whereas for osteoclasts 50–100mM sodium fluoride were required for inhibition. Simultaneous localisation of both acid and alkaline phosphatase activities was possible in tissue that had been fixed in 85% ethanol and processed immediately. In the growth plates of the secondary ossification centre and the physis, there was a sequential localisation of the two phosphatases associated with chondrocyte maturation. The matrix surrounding immature epiphyseal chondrocytes or resting/proliferating growth plate chondrocytes contained weak acid phosphatase activity. Maturing chondrocytes were positive for alkaline phosphatase which spread to the matrix in the pre-mineralising zone, in a pattern that was consistent with the known location of matrix vesicles. The region of strong alkaline phosphatase activity was the precise region where acid phosphatase activity was reduced. With the onset of cartilage calcification, alkaline phosphatase activity disappeared, but strong acid phosphatase activity was found in close association with the early mineral deposition. Acid phosphatase activity was also present in the matrix of the endochondral bone, but was only found in early spicules which had recently mineralised. The results suggest that alkaline phosphatase activity is required in preparation of mineralization, whereas acid phosphatase activity might have a contributory role during the early progression of mineral formation.  相似文献   
13.
Casein kinase II is a ubiquitous serine/threonine protein kinase which utilizes acidic amino acid residues as recognition determinants in its substrates, the motif -S/T-X-X-D/E- being particularly important. To test whether a phosphoserine residue can act as a substrate determinant, a peptide was synthesized, containing the sequence -S-X-X-S, which was not phosphorylated by casein kinase II. However, upon phosphorylation at the +3 position, the peptide became a substrate for casein kinase II. With another peptide, a positive influence of more distal phosphorylations was found. The results indicate the potential for casein kinase II to participate in hierarchal phosphorylation schemes.  相似文献   
14.
Isolated microtubule proteins from the Atlantic cod (Gadus morhua) assemble at temperatures between 8 and 30 degrees C. The cold-adaptation is an intrinsic property of the tubulin molecules, but the reason for it is unknown. To increase our knowledge of tubulin diversity and its role in cold-adaptation we have further characterized cod tubulins using alpha- and beta-tubulin site-directed antibodies and antibodies towards posttranslationally modified tubulin. In addition, one cod brain beta-tubulin isotype has been sequenced. In mammals there are five beta-tubulins (betaI, betaII, betaIII, betaIVa and betaIVb) expressed in brain. A cod betaIII-tubulin was identified by its electrophoretic mobility after reduction and carboxymethylation. The betaIII-like tubulin accounted for more than 30% of total brain beta-tubulins, the highest yield yet observed in any animal. This tubulin corresponds most probably with an additional band, designated beta(x), which was found between alpha- and beta-tubulins on SDS-polyacrylamide gels. It was found to be phosphorylated and neurospecific, and constituted about 30% of total cod beta-tubulin isoforms. The sequenced cod tubulin was identified as a betaIV-tubulin, and a betaIV-isotype was stained by a C-terminal specific antibody. The amount of staining indicates that this isotype, as in mammals, only accounts for a minor part of the total brain beta-tubulin. Based on the estimated amounts of betaIII- and betaIV-tubulins in cod brain, our results indicate that cod has at least one additional beta-tubulin isotype and that beta-tubulin diversity evolved early during fish evolution. The sequenced cod betaIV-tubulin had four unique amino acid substitutions when compared to beta-tubulin sequences from other animals, while one substitution was in common with Antarctic rockcod beta-tubulin. Residues 221, Thr to Ser, and 283, Ala to Ser, correspond in the bovine tubulin dimer structure to loops that most probably interact with other tubulin molecules within the microtubule, and might contribute to cold-adaptation of microtubules.  相似文献   
15.
MicroRNAs (miRNAs) are a class of small RNAs that play a critical role in the coordination of fundamental cellular processes. Recent studies suggest that miRNAs participate in the cellular stress response (CSR), but their specific involvement remains unclear. In this study, we identify a group of thermally regulated miRNAs (TRMs) that are associated with the CSR. Using miRNA microarrays, we show that dermal fibroblasts differentially express 123 miRNAs when exposed to hyperthermia. Interestingly, only 27 of these miRNAs are annotated in the current Sanger registry. We validated the expression of the annotated miRNAs using qPCR techniques, and we found that the qPCR and microarray data was in well agreement. Computational target-prediction studies revealed that putative targets for the TRMs are heat shock proteins and Argonaute-2—the core functional unit of RNA silencing. These results indicate that cells express a specific group of miRNAs when exposed to hyperthermia, and these miRNAs may function in the regulation of the CSR. Future studies will be conducted to determine if other cells lines differentially express these miRNAs when exposed to hyperthermia.  相似文献   
16.
Glycogen synthase plays a key role in regulating glycogen metabolism. In a search for regulators of glycogen synthase, a yeast two-hybrid study was performed. Two glycogen synthase-interacting proteins were identified in human skeletal muscle, glycogenin-1, and nebulin. The interaction with glycogenin was found to be mediated by the region of glycogenin which contains the 33 COOH-terminal amino acid residues. The regions in glycogen synthase containing both NH2- and COOH-terminal phosphorylation sites are not involved in the interaction. The core segment of glycogen synthase from Glu21 to Gly503 does not bind COOH-terminal fragment of glycogenin. However, this region of glycogen synthase binds full-length glycogenin indicating that glycogenin contains at least one additional interacting site for glycogen synthase besides the COOH-terminus. We demonstrate that the COOH-terminal fragment of glycogenin can be used as an effective high affinity reagent for the purification of glycogen synthase from skeletal muscle and liver.  相似文献   
17.
In marine ecosystems, macroalgae are the habitat for several microorganisms, fungi being among them. In the Antarctic benthic coastal ecosystem, macroalgae play a key role in organic matter cycling. In this study, 13 different macroalgae from Potter Cove and surrounding areas were sampled and 48 fungal isolates were obtained from six species, four Rhodophyta Ballia callitricha, Gigartina skottsbergii, Neuroglossum delesseriae and Palmaria decipiens, and two Phaeophyceae: Adenocystis utricularis and Ascoseira mirabilis. Fungal isolates mostly belonged to the Ascomycota phylum (Antarctomyces, Cadophora, Cladosporium, Penicillium, Phialocephala, and Pseudogymnoascus) and only one to the phylum Mucoromycota. Two of the isolates could not be identified to genus level, implying that Antarctica is a source of probable novel fungal taxa with enormous bioprospecting and biotechnological potential. 73% of the fungal isolates were moderate eurypsychrophilic (they grew at 5–25 °C), 12.5% were eurypsychrophilic and grew in the whole range, 12.5% of the isolates were narrow eurypsychrophilic (growth at 15–25 °C), and Mucoromycota AUe4 was classified as stenopsychrophilic as it grew at 5–15 °C. Organic extracts of seven macroalgae from which no fungal growth was obtained (three red algae Georgiella confluens, Gymnogongrus turquetii, Plocamium cartlagineum, and four brown algae Desmarestia anceps, D. Antarctica, Desmarestia menziesii, Himantothallus grandifolius) were tested against representative fungi of the genera isolated in this work. All extracts presented fungal inhibition, those from Plocamium cartilagineum and G. turquetii showed the best results, and for most of these macroalgae, this represents the first report of antifungal activity and constitute a promising source of compounds for future evaluation.  相似文献   
18.
19.
Isolated rat hepatocytes were incubated in a medium containing 0.1 mM [32P]phosphate (0.1 mCi/ml) before exposure to epinephrine, glucagon or vasopressin. 32P-labeled glycogen synthase was purified from extracts of control or hormone-treated cells by the use of specific antibodies raised to rabbit skeletal muscle glycogen synthase. Analysis of the immunoprecipitates by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate indicated that a single 32P-labeled polypeptide, apparent Mr 88000, was removed specifically by the antibodies and corresponded to glycogen synthase. Similar electrophoretic analysis of CNBr fragments prepared from the immunoprecipitate revealed that 32P was distributed between two fragments, of apparent Mr 14000 (CB-1) and 28000 (CB-2). Epinephrine, vasopressin or glucagon increased the 32P content of the glycogen synthase subunit. CB-2 phosphorylation was increased by all three hormones while CB-1 was most affected by epinephrine and vasopressin. These effects correlated with a decrease in glycogen synthase activity. From studies using rat liver glycogen synthase, purified by conventional methods and phosphorylated in vitro by individual protein kinases, it was found that electrophoretically similar CNBr fragments could be obtained. However, neither cyclic-AMP-dependent protein kinase nor three different Ca2+-dependent enzymes (phosphorylase kinase, calmodulin-dependent protein kinase, and protein kinase C) were effective in phosphorylating CB-2. The protein kinases most effective towards CB-2 were the Ca2+ and cyclic-nucleotide-independent enzymes casein kinase II (PC0.7) and FA/GSK-3. The results demonstrate that rat liver glycogen synthase undergoes multiple phosphorylation in whole cells and that stimulation of cells by glycogenolytic hormones can modify the phosphorylation of at least two distinct sites in the enzyme. The specificity of the hormones, however, cannot be explained simply by the direct action of any known protein kinase dependent on cyclic nucleotide or Ca2+. Therefore, either control of other protein kinases, such as FA/GSK-3, is involved or phosphatase activity is regulated, or both.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号