首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   25篇
  国内免费   9篇
  2023年   1篇
  2022年   2篇
  2021年   8篇
  2020年   2篇
  2019年   4篇
  2018年   10篇
  2017年   12篇
  2016年   16篇
  2015年   12篇
  2014年   16篇
  2013年   11篇
  2012年   24篇
  2011年   18篇
  2010年   21篇
  2009年   8篇
  2008年   11篇
  2007年   11篇
  2006年   9篇
  2005年   3篇
  2004年   7篇
  2003年   8篇
  2002年   6篇
  2001年   12篇
  2000年   3篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   2篇
  1984年   5篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1976年   1篇
  1974年   4篇
  1971年   1篇
  1969年   2篇
  1965年   1篇
排序方式: 共有301条查询结果,搜索用时 15 毫秒
41.
Cholangiocarcinoma (CCA) represents a diverse group of epithelial cancers associated with the biliary tract, and can best be stratified anatomically into intrahepatic (iCCA), perihilar (pCCA) and distal (dCCA) subsets. Molecular profiling has identified genetic aberrations associated with these anatomic subsets. For example, IDH catalytic site mutations and constitutively active FGFR2 fusion genes are predominantly identified in iCCA, whereas KRAS mutations and PRKACB fusions genes are identified in pCCA and dCCA. Clinical trials targeting these specific driver mutations are in progress. However, The Tumor Genome Atlas (TCGA) marker analysis of CCA also highlights the tremendous molecular heterogeneity of this cancer rendering comprehensive employment of targeted therapies challenging. CCA also display a rich tumor microenvironment which may be easier to target. For example, targeting cancer associated fibroblasts for apoptosis with BH3-mimetics and/or and reversing T-cell exhaustion with immune check point inhibitors may help aid in the treatment of this otherwise devastating malignancy. Combinatorial therapy attacking the tumor microenvironment plus targeted therapy may help advance treatment for CCA. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   
42.
43.
Abstract: An anaplastic large cell lymphoma with disseminated abdominal metastases was diagnosed in a 35-year-old male chimpanzee. Clinically, the animal displayed lethargy, weight loss, ascites, and abdominal distention. Imaging studies showed several large abdominal masses. At necropsy, variably sized masses of neoplastic mesenteric lymph nodes that encompassed several intestinal loops were present throughout the abdomen. The largest mass measured 9 × 5 cm and had cauliflower-like protrusions into the jejunal lumen. The entire abdominal cavity was covered by a sheet of neoplastic tissue. Histopathologically, the tumor consisted of solid sheets of proliferating lymphoid cells forming a cohesive growth that filled the lymph node sinuses. The tumor had invaded the intestinal wall. Anaplastic large cell lymphoma was diagnosed from immunohistochemistry findings on the basis of positive reaction to the CD3 and CD30 markers and negative reaction to the CD20 marker. Serologic analysis revealed positive titers for Epstein-Barr, cytomegalo-, and varicella-zoster viruses. Both serologic and virologic studies showed no evidence of detectable retroviral infection. This type of tumor has not been reported before in the chimpanzee.  相似文献   
44.
The distribution of amiloride-sensitive sodium channels (ASSCs) in taste buds isolated from the oral cavity of hamsters was assessed by patch clamp recording. In contrast to the case for rats, taste cells from the fungiform, foliate and vallate papillae and from the soft palate all contain functional ASSCs. The differential distribution of ASSCs between the hamster and the rat may be important for understanding the physiology underlying the differing behavioral responses of these species to sodium salts.   相似文献   
45.
46.
Herein, we have identified cross-talk between the Hippo and fibroblast growth factor receptor (FGFR) oncogenic signaling pathways in cholangiocarcinoma (CCA). Yes-associated protein (YAP) nuclear localization and up-regulation of canonical target genes was observed in CCA cell lines and a patient-derived xenograft (PDX). Expression of FGFR1, -2, and -4 was identified in human CCA cell lines, driven, in part, by YAP coactivation of TBX5. In turn, FGFR signaling in a cell line with minimal basal YAP expression induced its cellular protein expression and nuclear localization. Treatment of YAP-positive CCA cell lines with BGJ398, a pan-FGFR inhibitor, resulted in a decrease in YAP activation. FGFR activation of YAP appears to be driven largely by FGF5 activation of FGFR2, as siRNA silencing of this ligand or receptor, respectively, inhibited YAP nuclear localization. BGJ398 treatment of YAP-expressing cells induced cell death due to Mcl-1 depletion. In a YAP-associated mouse model of CCA, expression of FGFR 1, 2, and 4 was also significantly increased. Accordingly, BGJ398 treatment was tumor-suppressive in this model and in a YAP-positive PDX model. These preclinical data suggest not only that the YAP and Hippo signaling pathways culminate in an Mcl-1-regulated tumor survival pathway but also that nuclear YAP expression may be a biomarker to employ in FGFR-directed therapy.  相似文献   
47.
Neurochemical Research - At the present time, treatment of two most common degenerative disorders of elderly population i.e., Type 2 Diabetes Mellitus (T2DM) and Alzheimer’s disease (AD) is a...  相似文献   
48.
Small molecule drugs have readily been developed against many proteins in the human proteome, but RNA has remained an elusive target for drug discovery. Increasingly, we see that RNA, and to a lesser extent DNA elements, show a persistent tertiary structure responsible for many diverse and complex cellular functions. In this digest, we have summarized recent advances in screening approaches for RNA targets and outlined the discovery of novel, drug-like small molecules against RNA targets from various classes and therapeutic areas. The link of structure, function, and small-molecule Druggability validates now for the first time that RNA can be the targets of therapeutic agents.  相似文献   
49.
Increasing evidence suggests that culturing cancer cells in three dimensions more accurately recapitulates the complexity of tumor biology. Many of these models utilize reconstituted basement membrane derived from animals which contain a variable amount of growth factors and cytokines that can influence the growth of these cell culture models. Here, we describe in detail the preparation and use of PuraMatrix, a commercially available self assembling peptide gel that is devoid of animal-derived material and pathogens to encapsulate and propagate the ovarian cancer cell line, OVCAR-5. We begin by describing how to prepare the PuraMatrix prior to use. Next, we demonstrate how to properly mix the PuraMatrix and cell suspension to encapsulate the cells in the hydrogel. Upon the addition of cell culture media or injection into a physiological environment, the peptide component of PuraMatrix rapidly self assembles into a 3D hydrogel that exhibits a nanometer scale fibrous structure with an average pore size of 5-200 nm1. In addition, we demonstrate how to propagate cultures grown in encapsulated PuraMatrix. When encapsulated in PuraMatrix, OVCAR-5 cells assemble into three dimensional acinar structures that more closely resemble the morphology of micrometastatic nodules observed in the clinic than monolayer in vitro models. Using confocal microscopy we illustrate the appearance of representative OVCAR-5 cells encapsulated in PuraMatrix on day 1, 3, 5, and 7 post plating. The use of PuraMatrix to culture cancer cells should improve our understanding of the disease and allow us to assess treatment response in more clinically predictive model systems.Download video file.(85M, mp4)  相似文献   
50.
Erythrocyte oxidative stress has been implicated in the pathogenesis of diabetes mellitus, and the deficiency of antioxidant defense by the glutathione (GSH) pathway is thought to be one of the factors responsible for development of complications in diabetes. Erythrocytes require L-cysteine for the synthesis of GSH and the rate of synthesis is determined only by L-cysteine availability. In the present study we have found that the L-cysteine influx in erythrocytes from type 2 diabetic patients was significantly lower compared to age-matched controls. The decreased influx may be one of the factors leading to low GSH concentration observed in type 2 diabetes. Since L-cysteine is the limiting amino acid in GSH synthesis, any strategy aimed to increase L-cysteine influx in erythrocytes may be beneficial for type 2 diabetic patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号