首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   17篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   2篇
  2019年   4篇
  2018年   9篇
  2017年   9篇
  2016年   12篇
  2015年   9篇
  2014年   9篇
  2013年   9篇
  2012年   21篇
  2011年   13篇
  2010年   17篇
  2009年   7篇
  2008年   9篇
  2007年   7篇
  2006年   6篇
  2005年   3篇
  2004年   6篇
  2003年   7篇
  2002年   3篇
  2001年   10篇
  2000年   3篇
  1999年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   5篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1976年   1篇
  1974年   2篇
  1971年   1篇
  1969年   2篇
  1965年   1篇
排序方式: 共有230条查询结果,搜索用时 31 毫秒
121.
Background

An altered lipid profile may lead to the development of inflammation and NAFLD (Non-alcoholic fatty liver disease). Although statins have a positive effect on blood lipid levels their long-term use is known to cause adverse effects, in this backdrop there is an interest in natural compounds which may affect lipid metabolism and prevent NAFLD. We have examined the effect of Chitosan on rats subjected to a high-fat diet.

Methods and results

Male Wistar middle aged rats (12–16 months) were treated with high-fat diet orally for two months for creating a NAFLD model. Rats were also supplemented with Chitosan (2% chitosan daily) for 2 months. We assessed the activity of antioxidant enzymes, the histopathological profile of the liver. Inflammatory cytokines and adiponectin levels were also measured in serum. HFD induced significant changes in liver tissue and inflammatory markers (Il-6, TNF- alpha, NF-KB). Chitosan treatment protected rats from HFD induced alterations.

Conclusions

The findings suggest that Chitosan can effectively improve liver lipid metabolism by normalizing cholesterol, triglyceride, lowering NF-KB expression, and protecting the liver from oxidative stress by improving hepatic function. Chitosan also regulates genes related to lipidemic stress i,e leptin and adiponectin.

  相似文献   
122.
The regulation of transporters by nutrient-responsive signaling pathways allows cells to tailor nutrient uptake to environmental conditions. We investigated the role of feedback generated by transporter regulation in the budding yeast phosphate-responsive signal transduction (PHO) pathway. Cells starved for phosphate activate feedback loops that regulate high- and low-affinity phosphate transport. We determined that positive feedback is generated by PHO pathway-dependent upregulation of Spl2, a negative regulator of low-affinity phosphate uptake. The interplay of positive and negative feedback loops leads to bistability in phosphate transporter usage--individual cells express predominantly either low- or high-affinity transporters, both of which can yield similar phosphate uptake capacity. Cells lacking the high-affinity transporter, and associated negative feedback, exhibit phenotypes that arise from hysteresis due to unopposed positive feedback. In wild-type cells, population heterogeneity generated by feedback loops may provide a strategy for anticipating changes in environmental phosphate levels.  相似文献   
123.
Major histocompatibility complex (MHC) class I molecules are ligands for T-cell receptors of CD8+ T cells and inhibitory receptors of natural killer cells. Assembly of the heavy chain, light chain, and peptide components of MHC class I molecules occurs in the endoplasmic reticulum (ER). Specific assembly factors and generic ER chaperones, collectively called the MHC class I peptide loading complex (PLC), are required for MHC class I assembly. Calreticulin has an important role within the PLC and induces MHC class I cell surface expression, but the interactions and mechanisms involved are incompletely understood. We show that interactions with the thiol oxidoreductase ERp57 and substrate glycans are important for the recruitment of calreticulin into the PLC and for its functional activities in MHC class I assembly. The glycan and ERp57 binding sites of calreticulin contribute directly or indirectly to complexes between calreticulin and the MHC class I assembly factor tapasin and are important for maintaining steady-state levels of both tapasin and MHC class I heavy chains. A number of destabilizing conditions and mutations induce generic polypeptide binding sites on calreticulin and contribute to calreticulin-mediated suppression of misfolded protein aggregation in vitro. We show that generic polypeptide binding sites per se are insufficient for stable recruitment of calreticulin to PLC substrates in cells. However, such binding sites could contribute to substrate stabilization in a step that follows the glycan and ERp57-dependent recruitment of calreticulin to the PLC.  相似文献   
124.
Single‐chain variable fragment (scFv) antibodies are the smallest immunoglobulins with high antigen‐binding affinity. We have previously reported that fibroblast growth factor 1 played pivotal roles in cancer development and generated a mouse scFv (mscFv1C9) could effectively prohibit cancer cell proliferation in vitro and in vivo. Here, we further humanized this scFv (hscFv1C9) using a structure‐guided complementarity determining region grafting strategy. The purified hscFv1C9 maintained similar antigen‐binding affinity and specificity as mscFv1C9, and it was capable of inhibiting growth of different tumours in vitro and in vivo. These data strongly suggested that hscFv1C9 has antitumour potentials.  相似文献   
125.
Calreticulin is an endoplasmic reticulum chaperone with specificity for monoglucosylated glycoproteins. Calreticulin also inhibits precipitation of nonglycosylated proteins and thus contains generic protein-binding sites, but their location and contributions to substrate folding are unknown. We show that calreticulin binds glycosylated and nonglycosylated proteins with similar affinities but distinct interaction kinetics. Although both interactions involve the glycan-binding site or its vicinity, the arm-like proline-rich (P-) domain of calreticulin contributes to binding non/deglycosylated proteins. Correspondingly, ensemble FRET spectroscopy measurements indicate that glycosylated and nonglycosylated proteins induce “open” and “closed” P-domain conformations, respectively. The co-chaperone ERp57 influences substrate-binding kinetics and induces a closed P-domain conformation. Together with analysis of the interactions of calreticulin with cellular proteins, these findings indicate that the recruitment of monoglucosylated proteins to calreticulin is kinetically driven, whereas the P-domain and co-chaperone contribute to stable substrate binding. Substrate sequestration in the cleft between the glycan-binding site and P-domain is a likely mechanism for calreticulin-assisted protein folding.  相似文献   
126.
Our search for potent cholesterol absorption inhibitors led to the discovery of the β-lactam SCH 48461. Structure activity relationship studies prompted us to this study of γ-lactams, ring homologs of β-lactam SCH 48461, to determine their potential as cholesterol absorption inhibitors. The results indicate that the γ-lactams have moderate cholesterol absorption inhibitory properties.  相似文献   
127.
Studies on plant products have revealed that many of them may either act as fungicides,1,2) insecticides,3)chemosterilants,4,5) moluscicides,6) bactericides7) or as virucides.8) Although there are a number of reports on natural inhibitors of germination and growth,9) and on allelochemics,10) little work seems to have been done with respect to their possible selective effects, hence to their possible use as selective weedicides. Here we report a plant product that many act as a selective weedicide.  相似文献   
128.
Pea (Pisum sativum L.) is the third most important grain legume worldwide, and the increasing demand for protein-rich raw material has led to a great interest in this crop as a protein source. Seed yield and protein content in crops are strongly determined by nitrogen (N) nutrition, which in legumes relies on two complementary pathways: absorption by roots of soil mineral nitrogen, and fixation in nodules of atmospheric dinitrogen through the plant–Rhizobium symbiosis. This study assessed the potential of naturally occurring genetic variability of nodulated root structure and functioning traits to improve N nutrition in pea. Glasshouse and field experiments were performed on seven pea genotypes and on the ‘Cameor’ × ‘Ballet’ population of recombinant inbred lines selected on the basis of parental contrast for root and nodule traits. Significant variation was observed for most traits, which were obtained from non-destructive kinetic measurements of nodulated root and shoot in pouches, root and shoot image analysis, 15N quantification, or seed yield and protein content determination. A significant positive relationship was found between nodule establishment and root system growth, both among the seven genotypes and the RIL population. Moreover, several quantitative trait loci for root or nodule traits and seed N accumulation were mapped in similar locations, highlighting the possibility of breeding new pea cultivars with increased root system size, sustained nodule number, and improved N nutrition. The impact on both root or nodule traits and N nutrition of the genomic regions of the major developmental genes Le and Af was also underlined.  相似文献   
129.
In this study, we have developed a SYBR Green™ I-based real-time multiplexed PCR assay for the detection of Vibrio parahaemolyticus in Gulf of Mexico water (gulf water), artificially seeded and natural oysters targeting three hemolysin genes, tlh, tdh and trh in a single reaction. Post-amplification melt-temperature analysis confirmed the amplification of all three targeted genes with high specificity. The detection sensitivity was 10 cfu (initial inoculum) in 1 ml of gulf water or oyster tissue homogenate, following 5 h enrichment. The results showed 58% of the oysters to be positive for tlh, indicating the presence of V. parahaemolyticus; of which 21% were positive for tdh; and 0.7% for trh, signifying the presence of pathogenic strains. The C t values showed that oyster tissue matrix had some level of inhibition, whereas the gulf water had negligible effect on PCR amplification. The assay was rapid (~8 h), specific and sensitive, meeting the ISSC guidelines. Rapid detection using real-time multiplexed PCR will help reduce V. parahaemolyticus-related disease outbreaks, thereby increasing consumer confidence and economic success of the seafood industry.  相似文献   
130.
We describe a real-time multiplexed PCR method using Taqman probes for the detection of total and pandemic Vibrio parahaemolyticus O3:K6 serovar in oysters and Gulf of Mexico water (gulf water). The specificity of these primers and probes was tested for amplification of a 450 bp thermolabile hemolysin (tlh) and a 369 bp ORF8 amplicon representing all V. parahaemolyticus and post-1996 clinical isolates of pandemic serovar O3:K6, respectively. The sensitivity of detection was 10 pg purified DNA or 10(3) CFU in 1 mL pure culture. Enrichment of this pathogen in oyster tissue homogenate or gulf water for 5 or 8 h resulted in the detection of an initial inoculum of 1 CFU in 1 mL or 1 g of samples. Application of the Taqman PCR assay on natural oysters exhibited a positive detection of V. parahaemolyticus, ranging from 16% to 100% of the samples collected primarily during the summer months. None of the samples exhibited a positive detection of O3:K6 serovar. Rapid and sensitive detection of this pathogen will help shellfish industry and Interstate Shellfish Sanitation Conference (ISSC) undertake appropriate measures to monitor this pathogen in oysters and oyster-growing waters, thereby preventing disease outbreaks and consequently protecting consumer health.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号