首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   0篇
  2022年   3篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2011年   7篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1996年   1篇
  1983年   1篇
  1973年   2篇
排序方式: 共有52条查询结果,搜索用时 31 毫秒
41.
42.
Biophysics - Energy transduction reactions in the photosynthetic membrane are a primary step in storing solar energy to be used later in biosynthetic and other processes in living systems. This...  相似文献   
43.
Registration of chlorophyll fluorescence induction curves (IC) from individual microalgae cenobiums was performed during Scenedesmus quadricauda culture growth. Emphasis was placed on the analysis of patterns of the slow phase of IC, since these slow fluorescence transitions reflect complex interactions between primary and secondary photosynthetic processes. A classification was performed of the ICs obtained according to the patterns of their slow phase. Four different types of such patterns were distinguished. The microalgae population structure with respect to IC patterns was investigated at different stages of culture growth. The distribution of microalgae cenobiums over the patterns of IC was found to change in accordance with the stage of population development. At the stage of the population growth enhancement, nonmonotonous IC dominated with a high steady-state level of fluorescence. The stage of linear growth was characterized by IC with monotonous decay kinetics and low steady-state level of fluorescence. At the third stage including the phases of growth inhibition, stationary state and the beginning of cell death the population structure was the most heterogeneous, with all IC patterns observed.Abbreviations CO2 carbon dioxide - ETC electron transfer chain - Fl fluorescence - FNR ferredoxin-NADPH reductase - IC induction curve of chlorophyll fluorescence - PQ plastoquinone - PS I Photosystem I - PS II Photosystem II - QA primary quinone acceptor of PS II  相似文献   
44.
Further developing the method for direct multiparticle modeling of electron transport in the thylakoid membrane, here we examine the influence of the shape of the reaction volume on the kinetics of the interaction of the mobile carrier with the membrane complex. Applied to cyclic electron transport around photosystem I, with account of the distribution of complexes in the membrane and restricted diffusion of the reactants, the model demonstrates that the biphasic character of the dark reduction of P700+ is quite naturally explained by the spatial heterogeneity of the system.  相似文献   
45.
Biochemistry (Moscow) - Summarized results of investigation of regulation of electron transport and associated processes in the photosynthetic membrane using methods of mathematical and computer...  相似文献   
46.
Biophysics - The OJIPSMT pattern of chlorophyll (Chl) a fluorescence induction (FI) was obtained using Scenedesmus obliquus (Scenedesmus) microalgal cells exposed, after dark adaptation, to...  相似文献   
47.
The diffusion of the protein plastocyanine and complex formation between plastocyanine and cytochrome f (a subunit of a cytochrome b6/f complex) in the chloroplast thylakoid lumen has been studied. A 3D computer simulation model of diffusion and binding of plastocyanine and cytochrome f has been constructed, which considers their electrostatic interaction. Based on the experimental data, the parameters of the model for complex formation between plastocyanine and cytochrome f in solution have been estimated. The dependence of the rate of plastocyanine-cytochrome f reaction on the size of the luminal space has been studied. It was shown that the contraction of the luminal space leads to a decrease in the reaction rate, which is in agreement with the experimental data on the inhibition of the reaction under hyperosmotic stress.  相似文献   
48.
The set up described in Steffen et al. (Biochemistry 40:173-180, 2001) was used to monitor in the time domain from 100 ns to 10 s single turnover flash-induced transients of the normalized fluorescence yield (SFITFY) on dark-adapted cells of the thermophilic algae Chlorella pyrenoidosa Chick. Perfect data fit was achieved within the framework of a previously proposed model for the PS II reaction pattern (Lebedeva et al., Biophysics 47:968-980, 2002; Belyaeva et al., Biophysics 51:860-872, 2006) after its modification by taking into account nonradiative decay processes including nonphotochemical quenching due to time-dependent populations of P680(+*) and (3)Car. On the basis of data reported in the literature, a consistent set of rate constants was obtained for electron transfer at the donor and acceptor sides of PS II, pH in lumen and stroma, the initial redox state of plastoquinone pool and the rate of plastoquinone oxidation. The evaluation of the rate constant values of dissipative processes due to quenching by carotenoid triplets in antennae and P680(+*)Q(A)(-*) recombination as well as the initial state populations after excitation with a single laser flash are close to that outlined in (Steffen et al., Biochemistry 44:3123-3133, 2005a). The simulations based on the model of the PS II reaction pattern provide information on the time courses of population probabilities of different PS II states. We analyzed the maximum (F(m)(STF)) and minimum (F(0)) of the normalized FL yield dependence on the rate of the recombination processes (radiative and dissipative nonradiative) and of P680(+*) reduction. The developed PS II model provides a basis for theoretical comparative analyses of time-dependent fluorescence signals, observed at different photosynthetic samples under various conditions (e.g. presence of herbicides, other stress conditions, excitation with actinic pulses of different intensity, and duration).  相似文献   
49.
50.
This review covers the methods of computer simulation of protein interactions taking part in photosynthetic electron transport reactions. A direct multiparticle simulation method that simulates reactions describing interactions of ensembles of molecules in the heterogeneous interior of a cell is developed. In the models, protein molecules move according to the laws of Brownian dynamics, mutually orient themselves in the electrical field, and form complexes in the 3D scene. The method allows us to visualize the processes of molecule interactions and to calculate the rate constants for protein complex formation reactions in the solution and in the photosynthetic membrane. Three-dimensional multiparticle computer models for simulating the complex formation kinetics for plastocyanin with photosystem I and cytochrome bf complex, and ferredoxin with photosystem I and ferredoxin:NADP+-reductase are considered. Effects of ionic strength are featured for wild type and mutant proteins. The computer multiparticle models describe nonmonotonic dependences of complex formation rates on the ionic strength as the result of long-range electrostatic interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号