首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   9篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   8篇
  2013年   10篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   5篇
  2003年   2篇
  2002年   5篇
  2001年   5篇
  2000年   8篇
  1999年   6篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   6篇
  1983年   5篇
  1979年   2篇
  1978年   7篇
  1977年   2篇
  1976年   4篇
  1974年   1篇
  1970年   2篇
  1969年   1篇
  1966年   3篇
  1965年   2篇
排序方式: 共有139条查询结果,搜索用时 234 毫秒
101.
A chitosanase was purified from the culture fluid of the chitino- and chitosanolytic bacterium Burkholderia gladioli strain CHB101. The purified enzyme (chitosanase A) had a molecular mass of 28 kDa, and catalyzed the endo-type cleavage of chitosans having a low degree of acetylation (0–30%). The enzyme hydrolyzed glucosamine oligomers larger than a pentamer, but did not exhibit any activity toward N-acetyl-glucosamine oligomers and colloidal chitin. The gene coding for chitosanase A (csnA) was isolated and its nucleotide sequence determined. B. gladioli csnA has an ORF encoding a polypeptide of 355 amino acid residues. Analysis of the N-terminal amino acid sequence of the purified chitosanase A and comparison with that deduced from the csnA ORF suggests post-translational processing of a putative signal peptide and a possible substrate-binding domain. The deduced amino acid sequence corresponding to the mature protein showed 80% similarity to the sequences reported from Bacillus circulans strain MH-K1 and Bacillus ehimensis strain EAG1, which belong to family 46 glycosyl hydrolases. Received: 30 July 1999 / Revised revision: 17 February 2000 / Accepted: 25 February 2000  相似文献   
102.
The position effect is one major problem in the production of transgenic animals as mammary gland bioreactors. In the present study, we introduced the human growth hormone (hGH) gene into 210-kb human alpha-lactalbumin position-independent YAC vectors using homologous recombination and produced transgenic rats via microinjection of YAC DNA into rat embryos. The efficiency of producing transgenic rats with the YAC vector DNA was the same as that using plasmid constructs. All analyzed transgenic rats had one copy of the transgene and produced milk containing a high level of hGH (0.25-8.9 mg/ml). In transgenic rats with the YAC vector in which the human alpha-lactalbumin gene was replaced with the hGH gene, tissue specificity of hGH mRNA was the same as that of the endogenous rat alpha-lactalbumin gene. Thus, the 210-kb human alpha-lactalbumin YAC is a useful vector for high-level expression of foreign genes in the milk of transgenic animals.  相似文献   
103.
The aim of the present study was to investigate differences in the methods for preparing a large DNA fragment to be used for making transgenic rats from the standpoint of transgenic production efficiency and integrity of the introduced gene. In yeast artificial chromosome (YAC) transgenesis, three methods for preparing DNA for microinjection were compared: amplification of YAC in yeast (AMP), amplification of YAC in yeast and removal of the amplification element (AMP/RE), and no amplification of the YAC in yeast (AMP-). Production efficiency per microinjected ovum with DNA by the AMP method was four times higher than that by the AMP/RE and AMP-. Based on these results, we favor the AMP method in spite of the thymidine kinase gene-induced male sterility. In bacterial artificial chromosome (BAC) transgenesis, linear DNA fragments for microinjection prepared by three kinds of purification procedures were compared: Not I digestion and CsCl gradient ultra-centrifugation (Prep. 1), CsCl gradient ultra-centrifugation, Not I digestion, gel electrophoresis, and beta-agarase digestion (Prep. 2), and CsCl gradient ultra-centrifugation, Not I digestion, pulse field gel electrophoresis, and beta-agarase digestion (Prep. 3). Although the efficiency of producing transgenic rats was similar with all these three DNA preparations, integration of the intact DNA fragment only occurred with the Prep. 3 procedure. We therefore favor the Prep. 3 method for preparing BAC DNA fragments. These results indicate that the method used to prepare a large DNA fragment such as YAC and BAC DNAs is important in order to produce transgenic rats with an intact transgene.  相似文献   
104.
Host functions involved in synthesis of parental replicative form of bacteriophage G4 were investigated using various replication mutants of Escheria coli. In dna+ bacteria, conversion of single-stranded viral DNA to replicative form DNA was insensitive to 200 microng/ml of rifampicin or 25 microng/ml of chloramphenicol. At high temperature, synthesis of parental replicative form was unaffected in mutants thermosensitive for dnaA, dnaB, dnaC(D), dnaE or dnaH. In dnaG or dnaZ mutants, however, parental replicative from DNA synthesis was clearly thermosensitive at 43 degrees C. Although the host rep product was essential for viral multiplication, the conversion of single stranded to replicative form was independent of the rep function.  相似文献   
105.
106.
Rice blast, caused by Magnaporthe oryzae, is a devastating disease of rice (Oryza sativa). The mechanisms involved in resistance of rice to blast have been studied extensively and the rice—M. oryzae pathosystem has become a model for plant—microbe interaction studies. However, the mechanisms involved in nonhost resistance (NHR) of other plants to rice blast are still poorly understood. We have recently demonstrated that AGB1 and PMR5 contribute to PEN2-mediated preinvasion resistance to M. oryzae in Arabidopsis thaliana, suggesting a complex genetic network regulating the resistance. To determine whether other defense factors: RAR1, SGT1 and NHO1, affected the A. thaliana-M. oryzae interactions, double mutants were generated between pen2 and these defense-related mutants. All these double mutants exhibited a level of penetration resistance similar to that of the pen2 mutant, suggesting that none of these mutants significantly compromised resistance to M. oryzae in a pen2 background.Key words: nonhost resistance, PEN2, RAR1, SGT1, NHO1Plants face microbial attacks and have evolved innate immunity systems to defend against these threats. The initial step of the immunity signaling pathway is recognition of intra- or extracellular pathogen-derived molecules. Externally oriented transmembrane-type proteins containing leucine-rich repeat (LRR) domains detect extracellular molecules, whereas cytoplasmic sensors possess nucleotide-binding (NB) and LRR domains (NLR).1,2 The LRR domain serves as a pattern-recognition receptor to detect pathogen-derived molecules or host proteins that are targeted by pathogen peptides that have entered the cell, effectors.3 NLR-type sensors are the substrates of a structurally and functionally conserved chaperone complex that consists of HEAT SHOCK PROTEIN 90 (HSP90) and its cochaperone SUPPRESSOR OF THE G2 ALLELE OF SKP1 (SGT1). REQUIRED FOR MLA12 RESISTANCE 1 (RAR1) regulated the HSP90-SGT1 complex, resulting in the stabilization of NLR proteins. Thus, SGT1 and RAR1 are required for the function of multiple and distinct R genes that encode NLR immune sensors in plants.4 Experiments in RAR1-silenced transgenic rice lines showed that RAR1 is not essential for Pib, which encodes an NLR against rice blast fungus.5 In contrast, basal resistance to normally virulent races of rice blast fungus or bacterial blight is significantly reduced in RAR1-silenced lines. This result is consistent with earlier reports that RAR1 is involved in basal resistance to virulent Pseudomonas bacteria in Arabidopsis or blast fungus in barley.6,7 The requirement of SGT1 for immunity in plants is shown mostly by transient silencing of a number of NLR proteins.8,9 In addition, SGT1 is also required for immune responses triggered by non-NLR-type sensors.10 This requirement indicates that either SGT1 function is not limited to the NLR sensors, or some unknown SGT1-dependent NLR proteins also operate downstream of non NLR-type sensors. Furthermore, SGT1 is involved in nonhost resistance, indicating that SGT1 may be a general factor of disease resistance.10 An Arabidopsis mutant, nho1 (nonhost resistance 1), has been isolated on which Pseudomonas syringae pv. phaseolicola grows and causes disease symptoms.11,12 It is significant that this mutant is also compromised in R-gene-mediated resistance to P. syringae.11 Although NHO1 is the flagellin-induced glycerol kinase, whose exact function in NHR remains elusive.12,13 A possible explanation might be that altered plant glycerol pools either directly or indirectly affect nutrient availability for P. syringae. NHO1 is also required for resistance to the fungal pathogen Botrytis cinerea, indicating that NHO1 is not limited to bacterial resistance.12 However, these contributions to NHR to M. oryzae in A. thaliana have not been understood.To determine whether these factors were necessary for the resistance to M. oryzae in A. thaliana, the following A. thaliana mutants were inoculated with M. oryzae and monitored by microscopy: rar1-21;14 edm1-1;15 nho1-1,11 (all Col-0 background). All these mutants exhibited a level of penetration resistance similar to that of the wild-type plants (data not shown), suggesting that none of these mutants significantly compromised resistance to M. oryzae. We have recently shown that among the penetration (pen) mutants, only the pen2,16 mutant allowed increased penetration into epidermal cells by M. oryzae.17 Thus, double mutants were generated between pen2 and these mutants to determine whether these factors were necessary for the resistance to M. oryzae in a pen2 background: pen2 rar1-21; pen2 edm1-1; pen2 nho1-1. All these double mutants exhibited a level of penetration resistance similar to that of the pen2 mutant (Fig. 1), suggesting that none of these mutants significantly compromised resistance to M. oryzae in a pen2 background. This might indicate that NHR against M. oryzae may not be conferred by RAR1- and SGT1-dependent NLR immune sensors. Alternatively, since there has been no report that RAR1 is required for any known transmembrane sensors, such as FLS2, EFR or Xa21, RAR1- and SGT1-independent transmembrane-type immune sensors may be required for NHR against M. oryzae. Future studies will be required to reveal the genetic and mechanistic requirements for NHR in A. thaliana-M. oryzae interactions.Open in a separate windowFigure 1Double mutant analysis to evaluate the role of the defense related genes on resistance to Magnaporthe oryzae in Arabidopsis thaliana. The frequency of M. oryzae penetration on double mutants at 3 days post-inoculation was expressed as a percentage of total appressoria. Data were collected from six independent plants per line. A minimum of 100 infection sites was inspected per leaf. Results represent mean ± standard error of three independent experiments.  相似文献   
107.
In the case of fermentative production of adenosine by the mutants derived from a Bacillus strain, abnormal fermentations due to the instability of mutants were frequently observed, and therefore studies were performed on the stabilization of mutants.

Among the genetic characteristics of adenosine-producing mutants, the xanthine-requirement was the most important factor and the adenosine productivity was found to decrease significantly as the number of revertants on this genetic marker increased. By using the media supplemented with excess amount of guanine sources, the increase of xanthine-non-requiring revertants both during the transfers on slants and in the preservation periods was perfectly suppressed. Secondly, an attempt was made to derive mutants in which no revertants would appear. Such mutants (‘NB-strains’) were selected by using a medium on which revertants appeared in a high frequency. One strain of the above mutants was found defective in XMP aminase.  相似文献   
108.
We recently developed a new culture system based on dialysis perfusion (designated JCC-device) for the generation and expansion of human lymphokine-activated killer (LAK) cells (Murata et al., 1990). More recently we have scaled up the volume of the culture vessel of the JCC-device from 100 ml to 400 ml for clinical use. In the present study, using this new 400 ml JCC-device, we cultured human lymph node lymphocytes (LNL) obtained from 8 surgical patients with primary lung cancer, and investigated the cellular characteristics in comparison with a conventional batchwise culture system using tissue culture dishes. With the JCC-device, the cell density reached a maximum 2.7×107 cells/ml with greater than 90% viability by the appropriate exchange of perfusion medium and by making additions at the appropriate intervals for recombinant interleukin-2 (rIL-2). The expansion fold of LNL with the JCC-device, ranging 6.6- to 19.2-fold (mean 13.8-fold), was not significantly different from that in dish cultures. There was no marked difference in cell surface phenotypes between the two culture systems in 7 out of 8 cases. As for LAK activity of LNL, the JCC culture was either superior or equal in 4 out of 8 cases, but inferior in the other 4 cases to the conventional dish cultures. In the latter cases, the usage of serum for the JCC culture was limited, which might have resulted in the low LAK activity. The JCC-device was able to reduce the consumption of basal medium, rIL-2 and serum by 20%, 84% and 96%, respectively compared to the conventional tissue culture systems. The JCC-device improved the routine performance of adoptive immunotherapy with LAK cells and rIL-2.Abbreviations LAK lymphokine-activated killer - rIL-2 recombinant interleukin-2 - LNL lymph node lymphocytes - BM basal medium - CM complete medium - HBSS Hanks balanced salt solution - JRU Japan reference unit  相似文献   
109.
Functions of S-like ribonucleases (RNases) differ considerably from those of S-RNases that function in self-incompatibility. Expression of S-like RNases is usually induced by low nutrition, vermin damage or senescence. However, interestingly, an Australian carnivorous plant Drosera adelae (a sundew), which traps prey with a sticky digestive liquid, abundantly secretes an S-like RNase DA-I in the digestive liquid even in ordinary states. Here, using D. adelae, Dionaea muscipula (Venus flytrap) and Cephalotus follicularis (Australian pitcher plant), we show that carnivorous plants use S-like RNases for carnivory: the gene da-I encoding DA-I and its ortholog cf-I of C. follicularis are highly expressed and constitutively active in each trap/digestion organ, while the ortholog dm-I of D. muscipula becomes highly active after trapping insects. The da-I promoter is unmethylated only in its trap/digestion organ, glandular tentacles (which comprise a small percentage of the weight of the whole plant), but methylated in other organs, which explains the glandular tentacles-specific expression of the gene and indicates a very rare gene regulation system. In contrast, the promoters of dm-I, which shows induced expression, and cf-I, which has constitutive expression, were not methylated in any organs examined. Thus, it seems that the regulatory mechanisms of the da-I, dm-I and cf-I genes differ from each other and do not correlate with the phylogenetic relationship. The current study suggests that under environmental pressure in specific habitats carnivorous plants have managed to evolve their S-like RNase genes to function in carnivory.  相似文献   
110.
BACKGROUNDS AND AIMS: Eradication rates of Helicobacter pylori by a proton pump inhibitor-based triple therapy depend on CYP2C19 genotype status. We investigated whether gastric acid inhibition during an eradication therapy would influence the eradication rates attained by the triple therapy. METHODS: Thirty-two patients with H. pylori infection underwent the first-line triple therapy with lansoprazole 30 mg, amoxicillin 750 mg, and clarithromycin 400 mg b.i.d. for 1 week. In all 32 patients, the 24-hour intragastric pH monitoring was performed on day 6 during the treatment period. RESULTS: The intention-to-treat-based eradication rate by the first-line therapy was 75.0% (24/32, 95%CI: 56.60-88.54%). In patients with successful eradication, the median 24-hour pH was 6.4 (range; 5.0-7.6), which was significantly higher than that in patients without eradication [5.2 (2.2-6.2), p = .0131]. The median percentage time of pH < 4.0 during 24-hour postdose in patients with eradication [0.5% (0.0-31.6%)] was significantly shorter than that in patients without eradication [26.7% (6.0-72.2%), p = .0017]. These parameters for acid inhibition significantly differed among the different CYP2C19 genotype groups. When the percentage time of pH < 4.0 and 24-hour pH were attained < 10% and > 6.0, respectively, during the eradication treatment, the majority of patients could eradicate H. pylori infection, irrespective of the bacterial susceptibility to clarithromycin. CONCLUSIONS: The sustained intragastric pH > 4.0 for a longer postdose time appears to be required for a successful eradication of H. pylori with lansoprazole and acid-labile antibiotics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号