首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   839篇
  免费   87篇
  926篇
  2021年   8篇
  2016年   14篇
  2015年   12篇
  2014年   14篇
  2013年   24篇
  2012年   39篇
  2011年   28篇
  2010年   25篇
  2009年   22篇
  2008年   37篇
  2007年   32篇
  2006年   32篇
  2005年   27篇
  2004年   30篇
  2003年   35篇
  2002年   36篇
  2001年   34篇
  2000年   23篇
  1999年   11篇
  1998年   11篇
  1997年   10篇
  1996年   11篇
  1995年   11篇
  1994年   11篇
  1993年   13篇
  1992年   14篇
  1991年   21篇
  1990年   16篇
  1989年   20篇
  1988年   14篇
  1987年   13篇
  1986年   17篇
  1985年   18篇
  1984年   8篇
  1983年   20篇
  1982年   10篇
  1981年   10篇
  1979年   11篇
  1977年   8篇
  1976年   10篇
  1975年   7篇
  1974年   16篇
  1973年   11篇
  1972年   15篇
  1971年   9篇
  1970年   15篇
  1969年   7篇
  1968年   9篇
  1967年   13篇
  1966年   9篇
排序方式: 共有926条查询结果,搜索用时 0 毫秒
71.
Cleary J  Glick GD 《Biochemistry》2003,42(1):30-41
11F8 is a murine anti-ssDNA monoclonal autoantibody isolated from a lupus prone autoimmune mouse. This mAb binds sequence specifically, and prior studies have defined the thermodynamic and kinetic basis for sequence-specific recognition of ssDNA (Ackroyd, P. C., et al. (2001) Biochemistry 40, 2911-2922; Beckingham, J. A. and Glick, G. D. (2001) Bioorg. Med. Chem. 9, 2243-2252). Here we present experiments designed to identify the residues on 11F8 that mediate sequence-specific, noncognate, and nonspecific recognition of ssDNA and their contribution to the overall binding thermodynamics. Site-directed mutagenesis of an 11F8 single-chain construct reveals that six residues within the complementarity determining regions of 11F8 account for ca. 80% of the binding free energy and that there is little cooperativity between these residues. Germline-encoded aromatic and hydrophobic side chains provides the basis for nonspecific recognition of single-stranded thymine nucleobases. Sequence-specific recognition is controlled by a tyrosine in the heavy chain along with a somatically mutated arginine residue. Our data show that the manner in which 11F8 achieves sequence-specific recognition more closely resembles RNA-binding proteins such as U1A than other types of nucleic acid binding proteins. In addition, comparing the primary sequence of 11F8 with clonally related antibodies that differ by less than five amino acids suggests that somatic mutations which confer sequence specificity may be a feature that distinguishes glomerulotrophic pathogenic anti-DNA from those that are benign.  相似文献   
72.
73.
Vector for pop-in/pop-out gene replacement in Pichia pastoris   总被引:3,自引:0,他引:3  
Soderholm J  Bevis BJ  Glick BS 《BioTechniques》2001,31(2):306-10, 312
Gene replacement in yeast is often accomplished by using a counterselectable marker such as URA3. Although ura3 strains of Pichia pastoris have been generated, these strains are inconvenient to work with because they grow slowly, even in the presence of uracil. To overcome this limitation, we have developed an alternative counterselectable marker that can be used in any P. pastoris strain. This marker is the T-urf13 gene from the mitochondrial genome of male-sterile maize. Previous work showed that expression of a mitochondrially targeted form of T-urf13 in Saccharomyces cerevisiae rendered the cells sensitive to the insecticide methomyl, and similar results have now been obtained with P. pastoris. We have incorporated T-urf13 into a vector that also contains an ARG4 marker for positive selection. The resulting plasmid allows for pop-in/pop-out gene replacement in P. pastoris.  相似文献   
74.
Plasma levels of high density lipoprotein (HDL) cholesterol and its major protein component apolipoprotein (apo) A-I are significantly reduced in both acute and chronic inflammatory conditions, but the basis for this phenomenon is not well understood. We hypothesized that secretory phospholipase A(2) (sPLA(2)), an acute phase protein that has been found in association with HDL, promotes HDL catabolism. A series of HDL metabolic studies were performed in transgenic mice that specifically overexpress human sPLA(2) but have no evidence of local or systemic inflammation. We found that HDL isolated from these mice have a significantly lower phospholipid and cholesteryl ester and significantly greater triglyceride content. The fractional catabolic rate (FCR) of (125)I-HDL was significantly faster in sPLA(2) transgenic mice (4.08 +/- 0.01 pools/day) compared with control wild-type littermates (2.16 +/- 0.48 pools/day). (125)I-HDL isolated from sPLA(2) transgenic mice was catabolized significantly faster than (131)I-HDL isolated from wild-type mice after injection in wild-type mice (p < 0.001). Injection of (125)I-tyramine-cellobiose-HDL demonstrated significantly greater degradation of HDL apolipoproteins in the kidneys of sPLA(2) transgenic mice compared with control mice (p < 0.05). The fractional catabolic rate of [(3)H]cholesteryl ether HDL was significantly faster in sPLA(2)-overexpressing mice (6.48 +/- 0.24 pools/day) compared with controls (4.80 +/- 0.72 pools/day). Uptake of [(3)H] cholesteryl ether into the livers and adrenals of sPLA(2) transgenic mice was significantly enhanced compared with control mice. In summary, these data demonstrate that overexpression of sPLA(2) alone in the absence of inflammation causes profound alterations of HDL metabolism in vivo and are consistent with the hypothesis that sPLA(2) may promote HDL catabolism in acute and chronic inflammatory conditions.  相似文献   
75.
Chemical resolution of racemic 18-methoxycoronaridine (18-MC) was achieved by the formation of its diastereomeric sulfonamides with either (R)-(-)- or (S)-(+)-camphorsulfonyl chloride. Preliminary assessment of (+)-, (-)-, and (+/-)-18-MC x HCl showed similar effects on morphine self-administration in a rat model, and similar affinities at the kappa opioid receptors.  相似文献   
76.
A typical vertebrate cell contains several hundred sites of transitional ER (tER). Presumably, tER sites generate elements of the ER-Golgi intermediate compartment (ERGIC), and ERGIC elements then generate Golgi cisternae. Therefore, characterizing the mechanisms that influence tER distribution may shed light on the dynamic behavior of the Golgi. We explored the properties of tER sites using Sec13 as a marker protein. Fluorescence microscopy confirmed that tER sites are long-lived ER subdomains. tER sites proliferate during interphase but lose Sec13 during mitosis. Unlike ERGIC elements, tER sites move very little. Nevertheless, when microtubules are depolymerized with nocodazole, tER sites redistribute rapidly to form clusters next to Golgi structures. Hence, tER sites have the unusual property of being immobile, yet dynamic. These findings can be explained by a model in which new tER sites are created by retrograde membrane traffic from the Golgi. We propose that the tER-Golgi system is organized by mutual feedback between these two compartments.  相似文献   
77.
Fusobacterium nucleatum is an important oral anaerobic pathogen involved in periodontal and systemic infections. Studies of the molecular mechanisms involved in fusobacterial virulence and adhesion have been limited by lack of systems for efficient genetic manipulation. Plasmids were isolated from eight strains of F. nucleatum. The smallest plasmid, pKH9 (4,975 bp), was characterized and used to create new vectors for fusobacterial genetic manipulation. DNA sequence analysis of pKH9 revealed an open reading frame (ORF) encoding a putative autonomous rolling circle replication protein (Rep), an ORF predicted to encode a protein homologous to members of the FtsK/SpoIIIE cell division-DNA segregation protein family, and an operon encoding a putative toxin-antitoxin plasmid addiction system (txf-axf). Deletion analysis localized the pKH9 replication region in a 0.96-kbp fragment. The pKH9 rep gene is not present in this fragment, suggesting that pKH9 can replicate in fusobacteria independently of the Rep protein. A pKH9-based, compact Escherichia coli-F. nucleatum shuttle plasmid was constructed and found to be compatible with a previously described pFN1-based fusobacterial shuttle plasmid. Deletion of the pKH9 putative addiction system (txf-axf) reduced plasmid stability in fusobacteria, indicating its addiction properties and suggesting it to be the first plasmid addiction system described for fusobacteria. pKH9, its genetic elements, and its shuttle plasmid derivatives can serve as useful tools for investigating fusobacterial properties important in biofilm ecology and pathogenesis.  相似文献   
78.
The pathways of membrane traffic within the Golgi apparatus are not fully known. This question was addressed using the yeast Saccharomyces cerevisiae, in which the maturation of individual Golgi cisternae can be visualized. We recently proposed that the AP-1 clathrin adaptor mediates intra-Golgi recycling late in the process of cisternal maturation. Here, we demonstrate that AP-1 cooperates with the Ent5 clathrin adaptor to recycle a set of Golgi transmembrane proteins, including some that were previously thought to pass through endosomes. This recycling can be detected by removing AP-1 and Ent5, thereby diverting the AP-1/Ent5–dependent Golgi proteins into an alternative recycling loop that involves traffic to the plasma membrane followed by endocytosis. Unexpectedly, various AP-1/Ent5–dependent Golgi proteins show either intermediate or late kinetics of residence in maturing cisternae. We infer that the AP-1/Ent5 pair mediates two sequential intra-Golgi recycling pathways that define two classes of Golgi proteins. This insight can explain the polarized distribution of transmembrane proteins in the Golgi.  相似文献   
79.

Background

The BAG6 complex resides in the cytosol and acts as a sorting point to target diverse hydrophobic protein substrates along their appropriate paths, including proteasomal degradation and ER membrane insertion. Composed of a trimeric complex of BAG6, TRC35 and UBL4A, the BAG6 complex is closely associated with SGTA, a co-chaperone from which it can obtain hydrophobic substrates.

Methodology and Principal Findings

SGTA consists of an N-terminal dimerisation domain (SGTA_NT), a central tetratricopeptide repeat (TPR) domain, and a glutamine rich region towards the C-terminus. Here we solve a solution structure of the SGTA dimerisation domain and use biophysical techniques to investigate its interaction with two different UBL domains from the BAG6 complex. The SGTA_NT structure is a dimer with a tight hydrophobic interface connecting two sets of four alpha helices. Using a combination of NMR chemical shift perturbation, isothermal titration calorimetry (ITC) and microscale thermophoresis (MST) experiments we have biochemically characterised the interactions of SGTA with components of the BAG6 complex, the ubiquitin-like domain (UBL) containing proteins UBL4A and BAG6. We demonstrate that the UBL domains from UBL4A and BAG6 directly compete for binding to SGTA at the same site. Using a combination of structural and interaction data we have implemented the HADDOCK protein-protein interaction docking tool to generate models of the SGTA-UBL complexes.

Significance

This atomic level information contributes to our understanding of the way in which hydrophobic proteins have their fate decided by the collaboration between SGTA and the BAG6 complex.  相似文献   
80.
In previous studies, aluminium was found to retard bacterial growth and enhance porphyrin formation in Arthrobacter aurescens RS-2. The aim of this study was to establish the mechanism of action of aluminium which leads to increased porphyrin production. Cultures of Arthrobacter aurescens RS-2 were incubated in the absence and presence of 0.74 mm aluminium. After 6 and 24 h of incubation, various parameters of the haem biosynthetic pathway were determined. After 6 h of incubation with aluminium, the activities of the enzymes aminolevulinate synthase (ALAS), aminolevulinate dehydratase (ALAD), porphobilinogen deaminase (PBGD) and uroporphyrinogen decarboxylase (UROD) were increased by 120, 170, 190 and 203%, respectively, while that of ferrochelatase (FC) was found to be unchanged. However, after 24 h of incubation, no change in the activities of ALAS and ALAD was noted, while an about 2-fold increase in PBGD and UROD activities were observed. FC activity was decreased by 63%. It was concluded that aluminium exerts its effect by inducing the enzymes PBGD and UROD rather than by a direct or indirect effect on ALAS. Its effect on the final step in the haem biosynthetic pathway is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号