首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   6篇
  88篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2008年   1篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   7篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1987年   3篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1971年   3篇
  1965年   2篇
  1940年   1篇
  1933年   2篇
  1929年   1篇
排序方式: 共有88条查询结果,搜索用时 0 毫秒
81.
Enhanced proteolytic susceptibility of oxidized proteins   总被引:1,自引:0,他引:1  
  相似文献   
82.
Eukaryotic protein degradation   总被引:4,自引:0,他引:4  
  相似文献   
83.
1. Covalently-bound fatty acids were characterized in keratinous tissues obtained from a wide range of animals. 2. 18-Methyleicosanoic acid was a major component in all the mammalian fur samples examined except monotreme fur. In monotreme fur 26-carbon fatty acids predominated. 3. Fatty acids from feather keratin and reptile skin had different profiles to the alpha-keratins of mammalian fur. 4. The major forms of covalently-bound fatty acids are very similar in species that diverged up to 125 million years ago.  相似文献   
84.
The multicatalytic proteinase (MCP) prosome or proteasome is a large multifunctional complex which is believed to play a major role in non-lysosomal pathways of intracellular protein degradation and has recently been implicated in antigen processing. In this study, affinity-purified antibodies against rat liver MCP were used to investigate the localization of the proteinase both in rat liver and in growing human L-132 cells in culture, using electron microscopic immunogold techniques. Quantitation of the MCP in different subcellular localizations by morphometric analysis of electron micrographs showed the proportion in the nucleus to be 17% for hepatocytes and 51% for L-132 cells, demonstrating differences in the distribution of MCP in different cell types. In hepatocytes, 14% of the total MCP was found associated with the endoplasmic reticulum. The remainder was localized in the cytoplasmic matrix. Immunofluorescence studies with L-132 cells also showed a reaction in nuclei and cytoplasm. The localization of MCP is consistent with its proposed multiple functions in protein turnover, in the production of peptides for antigen presentation, and in RNA processing.  相似文献   
85.
The multicatalytic proteinase (MCP) complex catalyses cleavage of bonds on the carboxy-group side of basic, hydrophobic or acidic amino acid residues. Originally, it was proposed that the complex contained three distinct types of catalytic component. MCP from rat liver has been assayed for so-called trypsin-like activity with Boc-Leu-Ser-Thr-Arg-NH-Mec (Mec, 4-methylcoumarin; Boc, t-butoxycarbonyl), for chymotrypsin-like activity with Ala-Ala-Phe-NH-Mec and Suc-Leu-Leu-Val-Tyr-NH-MEc (Suc, succinyl), and peptidyl-glutamylpeptide hydrolase activity with Cbz-Leu-Leu-Glu-Nap (Nap, naphthylamide; Cbz, benzyloxycarbonyl). Results of these studies suggest that as many as five distinct components can be distinguished, one for the trypsin-like activity and two for each of the others. The activities were tested with a variety of serine-protease inhibitors, and other novel effectors have also been identified. The two most effective inhibitors were 4-(2-amino-ethyl)benzenesulphonyl fluoride, which selectivity inactivates the trypsin-like activity, and 3,4-dichloroisocoumarin which inhibits chymotrypsin-like activity and the second, cooperative component [Djaballah, H. & Rivett, A. J. (1992) Biochemistry 31, 4133-4141] of peptidylglutamylpeptide hydrolase activity. The three activities inhibited by 3,4-dichloroisocoumarin can easily be distinguished by the effects of chymostatin analogues, diisopropylfluorophosphate, guanidine/HCl and casein. The results support the view that the enzyme is a novel type of serine protease and suggest that it may contain at least five distinct catalytic components. Marked differences in the reactivities of the different catalytic sites with different reagents can be used to distinguish between them.  相似文献   
86.
87.
88.
Metal-catalyzed oxidation of proteins has been implicated in a variety of biological processes, particularly in the marking of proteins for subsequent proteolytic degradation. The metal-catalyzed oxidation of bacterial glutamine synthetase causes conformational, covalent, and functional alterations in the protein. To understand the structural basis of the functional changes, the time course of oxidative modification of glutamine synthetase was studied utilizing a nonenzymic model oxidation system consisting of ascorbate, oxygen, and iron. The structural modifications induced included: decreased thermal stability; weakening of subunit interactions; decrease in isoelectric point; introduction of carbonyl groups into amino acid side chains; and loss of two histidine residues. These changes did not denature the protein, but instead induced relatively subtle changes. Indeed, even the most extensively modified protein had a sedimentation velocity which was identical to that of the native enzyme. Comparison of the time courses of the structural and functional changes established that: (i) Loss of the metal binding site and of catalytic activity occurred with loss of one histidine per subunit; (ii) increased susceptibility to proteolysis occurred with loss of two histidine residues per subunit. Thus, oxidation at one site suffices to inactivate the enzyme, but two sites must be modified to induce susceptibility to proteolysis. The limited and specific changes induced by metal-catalyzed oxidation are consistent with a site-specific free radical mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号