首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   6篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2008年   1篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   7篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1987年   3篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1971年   3篇
  1965年   2篇
  1940年   1篇
  1933年   2篇
  1929年   1篇
排序方式: 共有88条查询结果,搜索用时 31 毫秒
61.
Isometric tension and isotonic shortening were measured at constant levels of calcium activation of varying magnitude in mechanically disrupted EGTA-treated ventricular bundles from guinea pigs. The results were as follows: (a) The effect of creatine phosphate (CP) on peak tension and rate of shortening saturated at a CP concentration more than 10 mM; below that level tension was increased and shortening velocity decreased. We interpreted this to mean that CP above 10 mM was sufficient to buffer MgATP(2-) intracellularly. (b) The activated bundles exhibited an exponential stress-strain relationship and the series elastic properties did not vary appreciably with degree of activation or creatine phosphate level. (c) At a muscle length 20 percent beyond just taut, peak tension increased with Ca(2+) concentration over the range slightly below 10(-6) to slightly above 10(-4)M. (d) By releasing the muscle length-active tension curves were constructed. Force declined to 20 percent peak tension with a decrease in muscle length (after the recoil) of only 11 percent at 10(-4)M Ca(2+) and 6 percent at 4x10(-6)M Ca(2+). (e) The rate of shortening after a release was greater at lower loads. At identical loads (relative to maximum force at a given Ca(2+) level), velocity at a given time after the release was less at lower Ca(2+) concentrations; at 10 M(-5), velocity was 72 percent of that at 10(-4)M, and at 4x10(-6)M, active shortening was usually delayed and was 40 percent of the velocity at 10(-4) M. Thus, under the conditions of these experiments, both velocity and peak tension depend on the level of Ca(2+) activation over a similar range of Ca(2+) concentration.  相似文献   
62.
Summary The interaction of melittin and a truncated analogue of melittin with an immobilised phosphatidylcholine monolayer has been studied using dynamic elution techniques. The melittin analogue (21Q analogue) had five amino acids omitted from the C-terminal region of melittin. The influence of temperature and methanol concentration on the binding affinity of the two peptides was determined and compared to the binding behaviour of two control moleculesN-acetyltryptophanamide and diphenylalanine. Both peptides exhibited non-linear dependence of affinity on % methanol at different temperatures, whileN-acetyltryptophanamide and diphenylalanine exhibited linear behaviour. In addition, both melittin and the 21Q analogue exhibited significant band broadening under a range of experimental conditions, which was not evident forN-acetyltryptophanamide and diphenylalanine. As melittin is known to adopt a significant degree of α-helical conformation in the presence of lipids, the results suggest that melittin and the 21Q analogue adopt different conformations and orientations upon binding to the immobilised phosphatidylcholine surface. Overall, the results of this study demonstrate that the immobilised lipid monolayer provides a powerful system to rapidly assess the affinity of peptides for different lipid surfaces.  相似文献   
63.
Brain tissue contains at least two forms of phenolsulfotransferase that are involved in the sulfate conjugation of biogenic amines and their metabolites. Two apparent Km values were obtained for p-nitrophenol at pH 7.4 (0.6 microM and 0.3 mM) but only one enzyme had the capacity to conjugate dopamine (Km = 130 microM). Dopamine sulfotransferase activity was found to vary 17-fold in different brain regions, with the highest levels in diencephalon, hippocampus, and striatum. To determine the cellular localization of the enzymes, phenolsulfotransferase activity was measured in striatum following selective destruction of striatal neurons by stereotaxic injection of 2 micrograms kainic acid. Fourteen days after injection the catecholamine sulfotransferase activity in the lesioned striatum was reduced to approximately 40-50% of that in the control contralateral striatum. There was a statistically significant correlation between the ratio of lesioned to control activity for the sulfotransferase and the neuronal marker enzymes glutamate decarboxylase and neuron-specific enolase. p-Nitrophenol sulfotransferase activity was also decreased in the lesioned striatum. These results suggest that PST activity is present within the kainic acid-sensitive neurons of the striatum. The regional variation in activity, together with the results of the kainic acid studies, suggest that sulfate conjugation of biogenic amines and their metabolites in brain may take place within specific types of neurons.  相似文献   
64.
Abstract: The cellular localization of the two forms of catechol- O -methyltransferase (COMT) was investigated by measuring their activities in rat striatum following unilateral stereotaxic injection of kainic acid, which causes degeneration of striatal neurons followed by proliferation of astroglial cells. Membrane-bound COMT activity was decreased in the lesioned striatum, while soluble COMT activity was increased. There was a statistically significant correlation between the ratio of lesioned to control activity for membrane-bound COMT and the neuronal marker enzyme glutamate decarboxylase. Similarly the increase in soluble COMT activity paralleled that of the astroglial marker enzyme, glutamine synthetase. These results indicate that the K m membrane-bound catechol- O -methyltransferase may be localized predominantly in neurons, whereas the high-Km soluble enzyme is found in glial cells.  相似文献   
65.
Mixed-function oxidation of Escherichia coli glutamine synthetase has previously been suggested to mark the enzyme for intracellular degradation, and in vitro studies have demonstrated that oxidation renders the enzyme susceptible to proteolytic attack. In this study, the susceptibility of glutamine synthetase to degradation by purified proteases has been compared with the rate of degradation after microinjection into hepatoma cells. Upon exposure to an ascorbate mixed-function oxidation system the enzyme rapidly loses most of its activity, but further oxidation is required to cause susceptibility to extensive proteolytic attack either by a high-molecular-weight liver cysteine proteinase or by trypsin. The rate of degradation of biosynthetically 14C-labeled native and oxidized glutamine synthetase preparations after injection into hepatoma cells parallels their susceptibility to proteolysis in vitro. Native enzyme preparations and enzyme oxidatively inactivated, but not susceptible to extensive degradation by purified proteases, had similar intracellular half-lives; however, oxidized enzyme preparations that were susceptible to proteolytic breakdown in vitro were degraded almost ten times faster than the native enzyme within the growing hepatoma cells. These results suggest that the same features of the oxidized enzyme that render it susceptible to proteolysis in vitro are also recognized by the intracellular degradation system. In addition, they show that loss of enzyme activity does not necessarily imply decreased metabolic stability.  相似文献   
66.
The multicatalytic proteinase of mammalian cells   总被引:20,自引:0,他引:20  
A high-molecular-weight nonlysosomal proteinase has recently been discovered in mammalian cells. It is a widely distributed and abundant enzyme which has attracted attention because of its complex multisubunit structure and its unusual catalytic properties. The 700-kDa proteinase is composed of many different types of low-molecular-weight subunits (Mr 21,000-34,000) arranged in a hollow cylindrical structure. This 20 S complex is very similar, if not identical, to the 19-20 S cylindrical particles, ring-type particles, or prosomes which have been isolated from several different types of eukaryotic cells. The proteinase appears to have at least two distinct catalytic sites and can cleave bonds on the carboxyl side of basic, hydrophobic, or acidic amino acid residues. Inhibition of proteinase activity by thiol reagents supports the suggestion that the enzyme is a cysteine proteinase but there is some evidence that it may be a serine proteinase and the catalytic mechanism is at present unknown. ATP has little effect on proteinase activity in most purified preparations but recently the proteinase has been implicated in ATP-dependent pathways of protein degradation. Ther is a second type of high-molecular-weight complex multisubunit proteinase, a 26 S particle, which catalyzes the ATP-dependent degradation of ubiquitin-protein conjugates. The precise function of these two complex proteinases in intracellular proteolysis remains to be elucidated.  相似文献   
67.
A nonlysosomal alkaline protease which degrades the oxidatively modified form of Escherichia coli glutamine synthetase has been purified to apparent homogeneity from rat and mouse liver acetone powders. Its molecular weight was determined to be 300,000 by Sephacryl S-300 gel filtration but results of further studies using high pressure liquid chromatography gel filtration suggest a value of 650,000. Examination of the subunit structure by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed multiple bands of molecular weights between 22,000 and 34,000. The alkaline protease was inhibited by thiol reagents. Phenylmethylsulfonyl fluoride, aprotinin, leupeptin, antipain, and chymostatin partially inhibited the protease. The inhibition by phenylmethylsulfonyl fluoride was prevented by dithiothreitol, and alpha 1-antitrypsin and soybean trypsin inhibitor did not inhibit. No inhibition was observed with metalloprotease inhibitors. The alkaline protease is active over a broad range of pH with optimum activity for the degradation of oxidized glutamine synthetase around pH 9.0. Its activity is not stimulated by MgATP. A study of the products of insulin B chain degradation demonstrated major cleavage sites at Gln13-Ala14, Leu15-Tyr16, Cys(SO3H)19-Gly20, Gln4-His5, and Leu17-Val18. Based on its endopeptidase activity and its inhibitor specificity, the alkaline protease should be classified as a cysteine proteinase. It appears to be distinct from previously described proteinases and is likely involved in nonlysosomal mechanisms of intracellular protein turnover.  相似文献   
68.
69.
A procedure is described that yields an apparently homogeneous preparation of the high-Km aldehyde reductase from rat brain. This procedure is also applicable to the purification of this enzyme from rat liver and ox brain. In the latter case, however, the purified preparation could be resolved into two protein bands, both of which had enzyme activity, by polyacrylamide-gel electrophoresis. Since a sample of the ox brain enzyme from an earlier step in the purification procedure only showed the presence of a single band of activity after electrophoresis, this apparent multiplicity probably results from modification of the enzyme, possibly by oxidation, during the final step of the purification. A number of properties of the rat brain enzyme were determined and these were compared with those of the enzyme from rat liver. The two preparations were similar in their stabilities, behaviour during purification, kinetic properties, electrophoretic mobilities and amino acid compositions. Antibodies to the rat liver enzyme cross-reacted with that from brain and the inhibition of both these preparations by the antiserum was similar, further supporting the view that the enzymes from these two sources were closely similar if not identical.  相似文献   
70.
H Djaballah  A J Rivett 《Biochemistry》1992,31(16):4133-4141
The multicatalytic proteinase (MCP) complex or proteasome is a major nonlysosomal proteinase of eukaryotic cells. The proteinase can cleave peptide bonds on the carboxyl side of hydrophobic, basic, or acidic amino acid residues. These activities have been referred to as "chymotrypsin-like", "trypsin-like", and "peptidylglutamyl-peptide hydrolase" activities, respectively, and have been shown to be catalyzed at distinct sites. The latter activity is often assayed with the synthetic peptide substrate Z-Leu-Leu-Glu-beta-naphthylamide (LLE-NA). N-tBoc-Ala-Ala-Asp-SBzl is also a substrate for the rat liver MCP, suggesting a broader specificity for cleavage on the carboxyl side of acidic residues than the peptidylglutamyl-peptide hydrolase activity previously reported. The pH optimum is in the range of pH 7.0-7.5. Studies of the dependence of velocity on LLE-NA concentration show (a) that there is a high-affinity site (LLE1) which obeys Michaelis-Menten kinetics with a Km value of approximately 100 microM and (b) that at higher substrate concentrations (LLE2) the curve is sigmoidal, suggesting either allosteric activation of the proteinase at a second site or the involvement of multiple catalytic sites which display positive cooperativity. Activity at the high-affinity site (LLE1) can be distinguished from that of the activity of the LLE2 component by the effect of inhibitors, divalent metal ions, and KCl, as well as by its response to heat treatment. The addition of 1 mM MnCl2 stimulates both LLE1 and LLE2 activities and also permits saturation of MCP with substrate at concentrations of LLE-NA below the solubility limit of this peptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号