全文获取类型
收费全文 | 153篇 |
免费 | 8篇 |
专业分类
161篇 |
出版年
2021年 | 2篇 |
2020年 | 1篇 |
2019年 | 1篇 |
2017年 | 1篇 |
2015年 | 7篇 |
2014年 | 4篇 |
2013年 | 8篇 |
2012年 | 7篇 |
2011年 | 5篇 |
2010年 | 6篇 |
2009年 | 7篇 |
2008年 | 2篇 |
2006年 | 2篇 |
2005年 | 1篇 |
2004年 | 1篇 |
2003年 | 3篇 |
2001年 | 4篇 |
2000年 | 1篇 |
1999年 | 8篇 |
1998年 | 3篇 |
1997年 | 3篇 |
1996年 | 5篇 |
1995年 | 3篇 |
1994年 | 2篇 |
1993年 | 3篇 |
1992年 | 3篇 |
1991年 | 4篇 |
1990年 | 5篇 |
1989年 | 2篇 |
1988年 | 1篇 |
1987年 | 2篇 |
1986年 | 5篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 3篇 |
1981年 | 7篇 |
1980年 | 1篇 |
1979年 | 10篇 |
1978年 | 11篇 |
1977年 | 6篇 |
1975年 | 1篇 |
1974年 | 5篇 |
1973年 | 1篇 |
1969年 | 1篇 |
排序方式: 共有161条查询结果,搜索用时 31 毫秒
81.
Comparison of the evolutionary dynamics of symbiotic and housekeeping loci: a case for the genetic coherence of rhizobial lineages 总被引:5,自引:1,他引:5
In prokaryotes, lateral gene transfer across chromosomal lineages may be
mediated by plasmids, phages, transposable elements, and other accessory
DNA elements. However, the importance of such transfer and the evolutionary
forces that may restrict gene exchange remain largely unexplored in native
settings. In this study, tests of phylogenetic congruence are employed to
explore the range of horizontal transfer of symbiotic (sym) loci among
distinct chromosomal lineages of native rhizobia, the nitrogen-fixing
symbiont of legumes. Rhizobial strains isolated from nodules of several
host plant genera were sequenced at three loci: symbiotic nodulation genes
(nodB and nodC), the chromosomal housekeeping locus glutamine synthetase II
(GSII), and a portion of the 16S rRNA gene. Molecular phylogenetic analysis
shows that each locus generally subdivides strains into the same major
groups, which correspond to the genera Rhizobium, Sinorhizobium, and
Mesorhizobium. This broad phylogenetic congruence indicates a lack of
lateral transfer across major chromosomal subdivisions, and it contrasts
with previous studies of agricultural populations showing broad transfer of
sym loci across divergent chromosomal lineages. A general correspondence of
the three rhizobial genera with major legume groups suggests that host
plant associations may be important in the differentiation of rhizobial nod
and chromosomal loci and may restrict lateral transfer among strains. The
second major result is a significant incongruence of nod and GSII
phylogenies within rhizobial subdivisions, which strongly suggests
horizontal transfer of nod genes among congenerics. This combined evidence
for lateral gene transfer within, but not between, genetic subdivisions
supports the view that rhizobial genera are "reproductively isolated" and
diverge independently. Differences across rhizobial genera in the
specificity of host associations imply that the evolutionary dynamics of
the symbiosis vary considerably across lineages in native settings.
相似文献
82.
83.
84.
85.
Rob Noorlag Pauline MW van Kempen Cathy B Moelans Rick de Jong Laura ER Blok Ronald Koole Wilko Grolman Paul J van Diest Robert JJ van Es Stefan M Willems 《Epigenetics》2014,9(9):1220-1227
Silencing of tumor suppressor genes (TSGs) by DNA promoter hypermethylation is an early event in carcinogenesis and a potential target for personalized cancer treatment. In head and neck cancer, little is known about the role of promoter hypermethylation in survival. Using methylation specific multiplex ligation-dependent probe amplification (MS-MLPA) we investigated the role of promoter hypermethylation of 24 well-described genes (some of which are classic TSGs), which are frequently methylated in different cancer types, in 166 HPV-negative early oral squamous cell carcinomas (OSCC), and 51 HPV-negative early oropharyngeal squamous cell carcinomas (OPSCC) in relation to clinicopathological features and survival. Early OSCC showed frequent promoter hypermethylation in RARB (31% of cases), CHFR (20%), CDH13 (13%), DAPK1 (12%), and APC (10%). More hypermethylation (≥ 2 genes) independently correlated with improved disease specific survival (hazard ratio 0.17, P = 0.014) in early OSCC and could therefore be used as prognostic biomarker. Early OPSCCs showed more hypermethylation of CDH13 (58%), TP73 (14%), and total hypermethylated genes. Hypermethylation of two or more genes has a significantly different effect on survival in OPSCC compared with OSCC, with a trend toward worse instead of better survival. This could have a biological explanation, which deserves further investigation and could possibly lead to more stratified treatment in the future. 相似文献
86.
Elodie Mathieu‐Rivet Frédéric Gévaudant Adrien Sicard Sophie Salar Phuc Thi Do Armand Mouras Alisdair R. Fernie Yves Gibon Christophe Rothan Christian Chevalier Michel Hernould 《The Plant journal : for cell and molecular biology》2010,62(5):727-741
Tomato fruit growth is characterized by the occurrence of numerous rounds of DNA endo‐reduplication in connection with cell expansion and final fruit size determination. Endo‐reduplication is an impairment of mitosis that originates from the selective degradation of M phase‐specific cyclins via the ubiquitin‐mediated proteolytic pathway, requiring the E3 ubiquitin ligase anaphase promoting complex/cyclosome (APC/C). Two types of APC/C activators, namely CCS52 and CDC20 proteins, exist in plants. We report here the molecular characterization of such APC/C activators during fruit development, and provide an in planta functional analysis of SlCCS52A, a gene that is specifically associated with endo‐reduplication in tomato. Altering SlCCS52A expression in either a negative or positive manner had an impact on the extent of endo‐reduplication in fruit, and fruit size was reduced in both cases. In SlCCS52A over‐expressing fruits, endo‐reduplication was initially delayed, accounting for the altered final fruit size, but resumed and was even enhanced at 15 days post anthesis (dpa), leading to fruit growth recovery. This induction of growth mediated by endo‐reduplication had a considerable impact on nitrogen metabolism in developing fruits. Our data contribute to unravelling of the physiological role of endo‐reduplication in growth induction during tomato fruit development. 相似文献
87.
Adoptive T-cell transfer therapy relies upon in vitro expansion of autologous cytotoxic T cells that are capable of tumor recognition. The success of this cell-based therapy depends on the specificity and responsiveness of the T cell clones before transfer. During ex vivo expansion, CD8+ T cells present signs of replicative senescence and loss of function. The transfer of nonresponsive senescent T cells is a major bottleneck for the success of adoptive T-cell transfer therapy. Quantitative methods for assessing cellular age and responsiveness will facilitate the development of appropriate cell expansion and selection protocols. Although several biomarkers of lymphocyte senescence have been identified, these proteins in isolation are not sufficient to determine the age-dependent responsiveness of T cells. We have developed a multivariate model capable of extracting combinations of markers that are the most informative to predict cellular age. To acquire signaling information with high temporal resolution, we designed a microfluidic chip enabling parallel lysis and fixation of stimulated cell samples on-chip. The acquisition of 25 static biomarkers and 48 dynamic signaling measurements at different days in culture, integrating single-cell and population based information, allowed the multivariate regression model to accurately predict CD8+ T-cell age. From surface marker expression and early phosphorylation events following T-cell receptor stimulation, the model successfully predicts days in culture and number of population doublings with R2=0.91 and 0.98, respectively. Furthermore, we found that impairment of early signaling events following T cell receptor stimulation because of long term culture allows prediction of costimulatory molecules CD28 and CD27 expression levels and the number of population divisions in culture from a limited subset of signaling proteins. The multivariate analysis highlights the information content of both averaged biomarker values and heterogeneity metrics for prediction of cellular age within a T cell population. 相似文献
88.
Barbara Vanaelst Nathalie Michels Inge Huybrechts Els Clays Maria R. Flórez Lieve Balcaen Martin Resano Maite Aramendia Frank Vanhaecke Noellie Rivet Jean-Sebastien Raul Anne Lanfer Stefaan De Henauw 《Biological trace element research》2013,153(1-3):41-49
Chronic stress exposure is associated with diverse negative health outcomes. It has been hypothesised that stress may also negatively affect the body's mineral status. This study investigates the association between chronic stress and long-term mineral concentrations of calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), phosphorus (P) and zinc (Zn) in scalp hair among elementary school girls. Complete information on child-reported stress estimates (Coddington Life Events Scale (CLES)), hair cortisone and hair mineral concentrations, and predefined confounders in the stress–mineral relationship (i.e. age, body mass index, physical activity, diet, hair colour and parental education) was provided cross-sectionally for 140 girls (5–10 years old). The relationship between childhood stress measures (predictor) and hair minerals (outcome) was studied using linear regression analysis, adjusted for the abovementioned confounders. Hair cortisone concentrations were inversely associated with hair mineral concentrations of Ca, Mg, Zn and the Ca/P ratio. Children at risk by life events (CLES) presented an elevated Ca/Mg ratio. These findings were persistent after adjustment for confounders. This study demonstrated an independent association between chronic stress measures and hair mineral levels in young girls, indicating the importance of physiological stress–mineral pathways independently from individual or behavioural factors. Findings need to be confirmed in a more heterogeneous population and on longitudinal basis. The precise mechanisms by which stress alters hair mineral levels should be further elucidated. 相似文献
89.
Crustacean and cheliceratan hemocyanins (oxygen-transport proteins) and
insect hexamerins (storage proteins) are homologous gene products, although
the latter do not bind oxygen and do not possess the copper- binding
histidines present in the hemocyanins. An alignment of 19 amino acid
sequences of hemocyanin subunits and insect hexamerins was made, based on
the conservation of elements of secondary structure observed in X-ray
structures of two hemocyanin subunits. The alignment was analyzed using
parsimony and neighbor-joining methods. Results provide strong indications
for grouping together the sequences of the 2 crustacean hemocyanin
subunits, the 5 cheliceratan hemocyanin subunits, and the 12 insect
hexamerins. Within the insect clade, four methionine- rich proteins, four
arylphorins, and two juvenile hormone-suppressible proteins from
Lepidoptera, as well as two dipteran proteins, form four separate groups.
In the absence of an outgroup sequence, it is not possible to present
information about the ancestral state from which these proteins are
derived. Although this family of proteins clearly consists of homologous
gene products, there remain striking differences in gene organization and
site of biosynthesis of the proteins within the cell. Because studies on
18S and 12S rRNA sequences indicate a rather close relationship between
insects and crustaceans, we propose that hemocyanin is the ancestral
arthropod protein and that insect hexamerins lost their copper-binding
capability after divergence of the insects from the crustaceans.
相似文献
90.