首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   797篇
  免费   81篇
  国内免费   1篇
  2022年   6篇
  2021年   18篇
  2020年   4篇
  2019年   10篇
  2018年   15篇
  2017年   14篇
  2016年   30篇
  2015年   44篇
  2014年   40篇
  2013年   43篇
  2012年   51篇
  2011年   61篇
  2010年   36篇
  2009年   30篇
  2008年   46篇
  2007年   43篇
  2006年   38篇
  2005年   34篇
  2004年   34篇
  2003年   29篇
  2002年   23篇
  2001年   20篇
  2000年   21篇
  1999年   11篇
  1998年   18篇
  1997年   8篇
  1996年   6篇
  1995年   10篇
  1994年   8篇
  1993年   4篇
  1992年   12篇
  1991年   10篇
  1990年   11篇
  1989年   13篇
  1988年   7篇
  1987年   7篇
  1986年   4篇
  1985年   5篇
  1984年   5篇
  1983年   4篇
  1982年   4篇
  1981年   5篇
  1977年   10篇
  1976年   4篇
  1975年   3篇
  1973年   4篇
  1972年   5篇
  1971年   3篇
  1967年   2篇
  1948年   1篇
排序方式: 共有879条查询结果,搜索用时 62 毫秒
31.
We review the evidence of how organisms and populations are currently responding to climate change through phenotypic plasticity, genotypic evolution, changes in distribution and, in some cases, local extinction. Organisms alter their gene expression and metabolism to increase the concentrations of several antistress compounds and to change their physiology, phenology, growth and reproduction in response to climate change. Rapid adaptation and microevolution occur at the population level. Together with these phenotypic and genotypic adaptations, the movement of organisms and the turnover of populations can lead to migration toward habitats with better conditions unless hindered by barriers. Both migration and local extinction of populations have occurred. However, many unknowns for all these processes remain. The roles of phenotypic plasticity and genotypic evolution and their possible trade‐offs and links with population structure warrant further research. The application of omic techniques to ecological studies will greatly favor this research. It remains poorly understood how climate change will result in asymmetrical responses of species and how it will interact with other increasing global impacts, such as N eutrophication, changes in environmental N : P ratios and species invasion, among many others. The biogeochemical and biophysical feedbacks on climate of all these changes in vegetation are also poorly understood. We here review the evidence of responses to climate change and discuss the perspectives for increasing our knowledge of the interactions between climate change and life.  相似文献   
32.
Colonization by Helicobacter species is commonly noted in many mammals. These infections often remain unrecognized, but can cause severe health complications or more subtle host immune perturbations. The aim of this study was to isolate and characterize putative novel Helicobacter spp. from Bengal tigers in Thailand. Morphological investigation (Gram-staining and electron microscopy) and genetic studies (16SrRNA, 23SrRNA, flagellin, urease and prophage gene analyses, RAPD DNA fingerprinting and restriction fragment polymorphisms) as well as Western blotting were used to characterize the isolated Helicobacters. Electron microscopy revealed spiral-shaped bacteria, which varied in length (2.5–6 µm) and contained up to four monopolar sheathed flagella. The 16SrRNA, 23SrRNA, sequencing and protein expression analyses identified novel H. acinonychis isolates closely related to H. pylori. These Asian isolates are genetically very similar to H. acinonychis strains of other big cats (cheetahs, lions, lion-tiger hybrid and other tigers) from North America and Europe, which is remarkable in the context of the great genetic diversity among worldwide H. pylori strains. We also found by immunoblotting that the Bengal tiger isolates express UreaseA/B, flagellin, BabA adhesin, neutrophil-activating protein NapA, HtrA protease, γ-glutamyl-transpeptidase GGT, Slt lytic transglycosylase and two DNA transfer relaxase orthologs that were known from H. pylori, but not the cag pathogenicity island, nor CagA, VacA, SabA, DupA or OipA proteins. These results give fresh insights into H. acinonychis genetics and the expression of potential pathogenicity-associated factors and their possible pathophysiological relevance in related gastric infections.  相似文献   
33.
Multiple rare variants either within or across genes have been hypothesised to collectively influence complex human traits. The increasing availability of high throughput sequencing technologies offers the opportunity to study the effect of rare variants on these traits. However, appropriate and computationally efficient analytical methods are required to account for collections of rare variants that display a combination of protective, deleterious and null effects on the trait. We have developed a novel method for the analysis of rare genetic variation in a gene, region or pathway that, by simply aggregating summary statistics at each variant, can: (i) test for the presence of a mixture of effects on a trait; (ii) be applied to both binary and quantitative traits in population-based and family-based data; (iii) adjust for covariates to allow for non-genetic risk factors and; (iv) incorporate imputed genetic variation. In addition, for preliminary identification of promising genes, the method can be applied to association summary statistics, available from meta-analysis of published data, for example, without the need for individual level genotype data. Through simulation, we show that our method is immune to the presence of bi-directional effects, with no apparent loss in power across a range of different mixtures, and can achieve greater power than existing approaches as long as summary statistics at each variant are robust. We apply our method to investigate association of type-1 diabetes with imputed rare variants within genes in the major histocompatibility complex using genotype data from the Wellcome Trust Case Control Consortium.  相似文献   
34.
The protein synthesis machinery largely evolved prior to the last common ancestor and hence its study can provide insight to early events in the origin of life, including the transition from the hypothetical RNA world to living systems as we know them. By utilizing information from primary sequences, atomic resolution structures, and functional properties of the various components, it is possible to identify timing relationships (Hsiao et al., 2009; Fox, 2010). Taken together, these timing events are used to develop a preliminary time line for major evolutionary events leading to the modern protein synthesis machinery. It has been argued that a key initial event was the hybridization of two or more RNAs that created the peptidyl transferase center, (PTC), of the ribosome (Agmon et al. 2005). The PTC, left side of figure, contains a characteristic cavity/pore that serves as the entrance to the exit tunnel and is thought to be essential to the catalysis (Fox et al., 2012). This cavity is distinct from typical RNA pores (right side of figure) in that the nitrogenous bases face towards the lumen of the pore and thus are available for hydrogen bonding interactions. In typical RNA pores, the bases carefully avoid the lumen region. In support of Agmon et al. 2005), it is argued that this key difference reflects the fact the pore was created by an early hybridization event rather than normal RNA folding.  相似文献   
35.
In December 1997, one specimen of the Atlantic bumper, Chloroscombrus chrysurus was recorded for the first time in the Mediterranean Sea, off Almuñécar (Granada, Spain: 36° 43′ 26″ N; 3° 41′ 39″ W). This species probably entered the Mediterranean Sea via the Strait of Gibraltar.  相似文献   
36.
The interaction of MinC with FtsZ and its effects on FtsZ polymerization were studied under close to physiological conditions by a combination of biophysical methods. The Min system is a widely conserved mechanism in bacteria that ensures the correct placement of the division machinery at midcell. MinC is the component of this system that effectively interacts with FtsZ and inhibits the formation of the Z-ring. Here we report that MinC produces a concentration-dependent reduction in the size of GTP-induced FtsZ protofilaments (FtsZ-GTP) as demonstrated by analytical ultracentrifugation, dynamic light scattering, fluorescence correlation spectroscopy, and electron microscopy. Our experiments show that, despite being shorter, FtsZ protofilaments maintain their narrow distribution in size in the presence of MinC. The protein had the same effect regardless of its addition prior to or after FtsZ polymerization. Fluorescence anisotropy measurements indicated that MinC bound to FtsZ-GDP with a moderate affinity (apparent KD ∼10 μm at 100 mm KCl and pH 7.5) very close to the MinC concentration corresponding to the midpoint of the inhibition of FtsZ assembly. Only marginal binding of MinC to FtsZ-GTP protofilaments was observed by analytical ultracentrifugation and fluorescence correlation spectroscopy. Remarkably, MinC effects on FtsZ-GTP protofilaments and binding affinity to FtsZ-GDP were strongly dependent on ionic strength, being severely reduced at 500 mm KCl compared with 100 mm KCl. Our results support a mechanism in which MinC interacts with FtsZ-GDP, resulting in smaller protofilaments of defined size and having the same effect on both preassembled and growing FtsZ protofilaments.  相似文献   
37.
Posttranslational modification by SUMO provides functional flexibility to target proteins. Viruses interact extensively with the cellular SUMO modification system in order to improve their replication, and there are numerous examples of viral proteins that are SUMOylated. However, thus far the relevance of SUMOylation for rotavirus replication remains unexplored. In this study, we report that SUMOylation positively regulates rotavirus replication and viral protein production. We show that SUMO can be covalently conjugated to the viroplasm proteins VP1, VP2, NSP2, VP6, and NSP5. In addition, VP1, VP2, and NSP2 can also interact with SUMO in a noncovalent manner. We observed that an NSP5 SUMOylation mutant protein retains most of its activities, such as its interaction with VP1 and NSP2, the formation of viroplasm-like structures after the coexpression with NSP2, and the ability to complement in trans the lack of NSP5 in infected cells. However, this mutant is characterized by a high degree of phosphorylation and is impaired in the formation of viroplasm-like structures when coexpressed with VP2. These results reveal for the first time a positive role for SUMO modification in rotavirus replication, describe the SUMOylation of several viroplasm resident rotavirus proteins, and demonstrate a requirement for NSP5 SUMOylation in the production of viroplasm-like structures.  相似文献   
38.
Lactobacillus plantarum is a lactic acid bacterium able to degrade tannins by the subsequent action of tannase and gallate decarboxylase enzymes. The gene encoding tannase had previously been identified, whereas the gene encoding gallate decarboxylase is unknown. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of gallic-acid induced L. plantarum extracts showed a 54-kDa protein which was absent in the uninduced cells. This protein was identified as Lp_2945, putatively annotated UbiD. Homology searches identified ubiD-like genes located within three-gene operons which encoded the three subunits of nonoxidative aromatic acid decarboxylases. L. plantarum is the only bacterium in which the lpdC (lp_2945) gene and the lpdB and lpdD (lp_0271 and lp_0272) genes are separated in the chromosome. Combination of extracts from recombinant Escherichia coli cells expressing the lpdB, lpdC, and lpdC genes demonstrated that LpdC is the only protein required to yield gallate decarboxylase activity. However, the disruption of these genes in L. plantarum revealed that the lpdB and lpdC gene products are essential for gallate decarboxylase activity. Similar to L. plantarum tannase, which exhibited activity only in esters derived from gallic and protocatechuic acids, purified His6-LpdC protein from E. coli showed decarboxylase activity against gallic and protocatechuic acids. In contrast to the tannase activity, gallate decarboxylase activity is widely present among lactic acid bacteria. This study constitutes the first genetic characterization of a gallate decarboxylase enzyme and provides new insights into the role of the different subunits of bacterial nonoxidative aromatic acid decarboxylases.  相似文献   
39.
Tuberculosis is an ongoing threat to global health, especially with the emergence of multi drug-resistant (MDR) and extremely drug-resistant strains that are motivating the search for new treatment strategies. One potential strategy is immunotherapy using Innate Defence Regulator (IDR) peptides that selectively modulate innate immunity, enhancing chemokine induction and cell recruitment while suppressing potentially harmful inflammatory responses. IDR peptides possess only modest antimicrobial activity but have profound immunomodulatory functions that appear to be influential in resolving animal model infections. The IDR peptides HH2, 1018 and 1002 were tested for their activity against two M. tuberculosis strains, one drug-sensitive and the other MDR in both in vitro and in vivo models. All peptides showed no cytotoxic activity and only modest direct antimicrobial activity versus M. tuberculosis (MIC of 15–30 µg/ml). Nevertheless peptides HH2 and 1018 reduced bacillary loads in animal models with both the virulent drug susceptible H37Rv strain and an MDR isolate and, especially 1018 led to a considerable reduction in lung inflammation as revealed by decreased pneumonia. These results indicate that IDR peptides have potential as a novel immunotherapy against TB.  相似文献   
40.
In 2010 the identities of thousands of anti-Plasmodium compounds were released publicly to facilitate malaria drug development. Understanding these compounds’ mechanisms of action—i.e., the specific molecular targets by which they kill the parasite—would further facilitate the drug development process. Given that kinases are promising anti-malaria targets, we screened ~14,000 cell-active compounds for activity against five different protein kinases. Collections of cell-active compounds from GlaxoSmithKline (the ~13,000-compound Tres Cantos Antimalarial Set, or TCAMS), St. Jude Children’s Research Hospital (260 compounds), and the Medicines for Malaria Venture (the 400-compound Malaria Box) were screened in biochemical assays of Plasmodium falciparum calcium-dependent protein kinases 1 and 4 (CDPK1 and CDPK4), mitogen-associated protein kinase 2 (MAPK2/MAP2), protein kinase 6 (PK6), and protein kinase 7 (PK7). Novel potent inhibitors (IC50 < 1 μM) were discovered for three of the kinases: CDPK1, CDPK4, and PK6. The PK6 inhibitors are the most potent yet discovered for this enzyme and deserve further scrutiny. Additionally, kinome-wide competition assays revealed a compound that inhibits CDPK4 with few effects on ~150 human kinases, and several related compounds that inhibit CDPK1 and CDPK4 yet have limited cytotoxicity to human (HepG2) cells. Our data suggest that inhibiting multiple Plasmodium kinase targets without harming human cells is challenging but feasible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号