全文获取类型
收费全文 | 515篇 |
免费 | 31篇 |
专业分类
546篇 |
出版年
2023年 | 3篇 |
2022年 | 14篇 |
2021年 | 14篇 |
2020年 | 18篇 |
2019年 | 20篇 |
2018年 | 13篇 |
2017年 | 14篇 |
2016年 | 16篇 |
2015年 | 24篇 |
2014年 | 35篇 |
2013年 | 37篇 |
2012年 | 50篇 |
2011年 | 41篇 |
2010年 | 27篇 |
2009年 | 19篇 |
2008年 | 34篇 |
2007年 | 20篇 |
2006年 | 25篇 |
2005年 | 14篇 |
2004年 | 23篇 |
2003年 | 30篇 |
2002年 | 15篇 |
2000年 | 5篇 |
1999年 | 1篇 |
1998年 | 3篇 |
1997年 | 1篇 |
1996年 | 2篇 |
1994年 | 1篇 |
1992年 | 1篇 |
1990年 | 1篇 |
1989年 | 2篇 |
1988年 | 3篇 |
1987年 | 1篇 |
1986年 | 2篇 |
1985年 | 4篇 |
1984年 | 1篇 |
1982年 | 2篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1973年 | 1篇 |
1972年 | 1篇 |
1971年 | 1篇 |
1970年 | 1篇 |
1968年 | 1篇 |
1965年 | 1篇 |
排序方式: 共有546条查询结果,搜索用时 15 毫秒
441.
Dixit P Chillara R Khedgikar V Gautam J Kushwaha P Kumar A Singh D Trivedi R Maurya R 《Bioorganic & medicinal chemistry letters》2012,22(2):890-897
One new isoflavone glucoside, caviunin 7-O-[β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside] (10) and a new itaconic derivative, (E)-4-methoxy-2-(3,4-dihydroxybenzylidene)-4-oxobutanoic acid (15) along with series of isoflavones and flavonols with their glucosides (1-9 and 11-14) and a lignan glucoside (16) were isolated from the ethanolic extract of Dalbergia sissoo leaves. The structures of these compounds were established on the basis of IR, UV, (1)H and (13)C NMR, DEPT, COSY, HSQC, HMBC and MS data. All compounds (1-16) were assessed for osteogenic activity in primary calvarial osteoblast cultures. Compounds 1-4 and 10 increased alkaline phosphatase activity and mineralization thus resulting in significant osteogenic activity. 相似文献
442.
Oluwatoyin A. Adeleke Yahya E. Choonara Pradeep Kumar Lisa C. du Toit Lomas K. Tomar Charu Tyagi Viness Pillay 《AAPS PharmSciTech》2013,14(4):1349-1359
Drug release from hydrophilic matrices is regulated mainly by polymeric erosion, disentanglement, dissolution, swelling front movement, drug dissolution and diffusion through the polymeric matrix. These processes depend upon the interaction between the dissolution media, polymeric matrix and drug molecules, which can be significantly influenced by formulation variables and excipients. This study utilized mathematical parameters to evaluate the impacts of selected formulation variables and various excipients on the release performance of hydrophilic polyamide 6,10 (PA 6,10) monolithic matrix. Amitriptyline HCl and theophylline were employed as the high and low solubility model drugs, respectively. The incorporation of different excipient concentrations and changes in formulation components influenced the drug release dynamics as evidenced by computed mathematical quantities (t x%, MDT x%, f 1, f 2, k 1, k 2, and К F). The effects of excipients on drug release from the PA 6,10 monolithic matrix was further elucidated using static lattice atomistic simulations wherein the component energy refinements corroborates the in vitro and in silico experimental data. Consequently, the feasibility of modulating release kinetics of drug molecules from the novel PA 6,10 monolithic matrix was well suggested. 相似文献
443.
Benjamin Schoeps Celina Eckfeld Laura Flüter Selina Keppler Ritu Mishra Percy Knolle Felix Bayerl Jan Bttcher Chris D. Hermann Daniel Hußler Achim Krüger 《The Journal of biological chemistry》2021,297(3)
Multifunctionality of tissue inhibitor of metalloproteinases-1 (TIMP-1) comprising antiproteolytic as well as cytokinic activity has been attributed to its N-terminal and C-terminal domains, respectively. The molecular basis of the emerging proinflammatory cytokinic activity of TIMP-1 is still not completely understood. The cytokine receptor invariant chain (CD74) is involved in many inflammation-associated diseases and is highly expressed by immune cells. CD74 triggers zeta chain–associated protein kinase-70 (ZAP-70) signaling–associated activation upon interaction with its only known ligand, the macrophage migration inhibitory factor. Here, we demonstrate TIMP-1–CD74 interaction by coimmunoprecipitation and confocal microscopy in cells engineered to overexpress CD74. In silico docking in HADDOCK predicted regions of the N-terminal domain of TIMP-1 (N-TIMP-1) to interact with CD74. This was experimentally confirmed by confocal microscopy demonstrating that recombinant N-TIMP-1 lacking the entire C-terminal domain was sufficient to bind CD74. Interaction of TIMP-1 with endogenously expressed CD74 was demonstrated in the Namalwa B lymphoma cell line by dot blot binding assays as well as confocal microscopy. Functionally, we demonstrated that TIMP-1–CD74 interaction triggered intracellular ZAP-70 activation. N-TIMP-1 was sufficient to induce ZAP-70 activation and interference with the cytokine-binding site of CD74 using a synthetic peptide–abrogated TIMP-1-mediated ZAP-70 activation. Altogether, we here identified CD74 as a receptor and mediator of cytokinic TIMP-1 activity and revealed TIMP-1 as moonlighting protein harboring both cytokinic and antiproteolytic activity within its N-terminal domain. Recognition of this functional TIMP-1–CD74 interaction may shed new light on clinical attempts to therapeutically target ligand-induced CD74 activity in cancer and other inflammatory diseases. 相似文献
444.
445.
Anutosh Ganguly Hailing Yang Ritu Sharma Kamala D. Patel Fernando Cabral 《The Journal of biological chemistry》2012,287(52):43359-43369
Although microtubules have long been implicated in cell locomotion, the mechanism of their involvement remains controversial. Most studies have concluded that microtubules play a positive role by regulating actin polymerization, transporting membrane vesicles to the leading edge, and/or facilitating the turnover of adhesion plaques. Here we used wild-type and mutant CHO cell lines with alterations in tubulin to demonstrate that microtubules can also act to restrain cell motility. Tubulin mutations or low concentrations of drugs that suppress microtubule dynamics without affecting the amount of microtubule polymer inhibited the rate of migration by preventing microtubule reorganization in the trailing portion of the cells where the more dynamic microtubules are normally found. Under these conditions, cells along the edge of a wound still extended lamellipodia and elongated toward the wound but were inhibited in their ability to retract their tails, thus retarding forward progress. The idea that microtubules normally act to restrain cell locomotion was confirmed by treating cells with high concentrations of nocodazole to depolymerize the microtubule network. In the absence of microtubules, wild-type CHO and HeLa cells could still move at near normal speeds, but the movement became more random. We conclude that microtubules act both to restrain cell movement and to establish directionality. 相似文献
446.
Bibi F. Choonara Yahya E. Choonara Pradeep Kumar Lisa C. du Toit Lomas K. Tomar Charu Tyagi Viness Pillay 《AAPS PharmSciTech》2015,16(4):771-786
A menthol-based solid dispersion was designed to improve the intrinsic solubility of the poorly soluble sulfamethoxazole- a class II drug molecule of Biopharmaceutics Classification System (BCS) displaying widespread antibacterial activity. Solid dispersions of menthol and sulfamethoxazole were compressed with hydroxypropyl methylcellulose (HPMC) into suitable sulfamethoxazole-loaded matrix tablets for oral drug delivery. The sulfamethoxazole-loaded solid dispersions and compressed tablets were characterized for their physicochemical and physicomechanical properties such as changes in crystallinity, melting point, molecular transitions, and textural analysis for critical analysis of their effects on the solubility and dissolution of sulfamethoxazole. The formulations were further evaluated for swelling, degradation, solubility, and in vitro drug release behavior. In vitro drug release from the sulfamethoxazole-loaded matrix tablets displayed a minimum and maximum fractional release of 0.714 and 0.970, respectively. The tablets further displayed different release rate profiles over the study periods of 12, 16, 48, and 56 h which were attributed to the varying concentrations of menthol within each formulation. Menthol was determined as a suitable hydrophilic carrier for sulfamethoxazole since it functioned as a solubilizing and release-retarding agent for improving the solubility and dissolution of sulfamethoxazole as well as controlling the rate at which it was released.KEY WORDS: crystallinity, menthol, oral solubility and dissolution, solid dispersion, sulfamethoxazole 相似文献
447.
Autophagy is one of the cellular adaptive processes that provide protection against many pathological conditions like infection, cancer, neurodegeneration, and aging. Recent evidences suggest that ubiquitination plays an important role in degradation of proteins or defective organelle either through proteasome or autophagy. In this study, we describe the role of TRIM13, ER resident ubiquitin E3 ligase in induction of autophagy and its role during ER stress. The ectopic expression of TRIM13 in HEK-293 cells induces autophagy. Domain mapping showed that coiled-coil (CC) domain is required for induction of autophagy. TRIM13 is stabilized during ER stress, interacts with p62/SQSTM1 and co-localizes with DFCP1. TRIM13 regulates initiation of autophagy during ER stress and decreases the clonogenic ability of the cells. This study for the first time demonstrates the role of TRIM13 in induction of autophagy which may play an important role in regulation of ER stress and may act as tumor suppressor. 相似文献
448.
449.
Differential scanning calorimetry (DSC) provides authentic and accurate value of DeltaC(p)(X), the constant-pressure heat capacity change associated with the N (native state)<-->X (heat denatured state), the heat-induced denaturation equilibrium of the protein in the absence of a chemical denaturant. If X retains native-like buried hydrophobic interaction, DeltaC(p)(X) must be less than DeltaC(p)(D), the constant-pressure heat capacity change associated with the transition, N<-->D, where the state D is not only more unfolded than X but it also has its all groups exposed to water. One problem is that for most proteins D is observed only in the presence of chemical denaturants such as guanidinium chloride (GdmCl) and urea. Another problem is that DSC cannot yield authentic DeltaC(p)(D), for its measurement invokes the existence of putative specific binding sites for the chemical denaturants on N and D. We have developed a non-calorimetric method for the measurements of DeltaC(p)(D), which uses thermodynamic data obtained from the isothermal GdmCl (or urea)-induced denaturation and heat-induced denaturation in the presence of the chemical denaturant concentration at which significant concentrations of both N and D exist. We show that for each of the proteins (ribonuclease-A, lysozyme, alpha-lactalbumin and chymotrypsinogen) DeltaC(p)(D) is significantly higher than DeltaC(p)(X). DeltaC(p)(D) of the protein is also compared with that estimated using the known heat capacities of amino acid residues and their fractional area exposed on denaturation. 相似文献
450.
Ira H. Ames Christopher E. Gates A. Mariano Garcia Patricia A. John Anne K. Hennig Russell H. Tomar 《Cancer immunology, immunotherapy : CII》1987,25(3):161-168
Summary We have compared the ability of natural killer (NK) cells from two substrains of C3H mice that differ with respect to their susceptibility to the development of mammary adenocarcinomas to lyse fresh syngeneic mammary tumor cells. Single cell suspensions of mammary tumors from retired breeder females were used as targets in 22-h 51Cr-release cytotoxicity assays with syngeneic NK cells. Tumor cell suspensions were prepared by enzymatic digestion of finely minced tissue followed by centrifugation through a discontinuous Percoll gradient. Effector cells were prepared by passing spleen cells over nylon wool followed by centrifugation through Percoll fraction 7. Syngeneic NK cells had significant levels of lysis against 5/8 tumors studied. NK cells from low risk animals (C3Heb/FeJ) consistently demonstrated greater cytotoxicity against tumor cell preparations than did effectors from the high tumor substrain (C3H/OuJ). Study of cytocentrifuge preparations stained with Wright-Giemsa revealed that the two substrains were identical with respect to the number of azurophilic granules present in the cytoplasm of their NK cells. We have also shown that lymphokine-activated killer (LAK) cells can be generated from splenocytes in C3H mice. While LAK cells from both substrains were capable of lysing fresh syngeneic mammary tumor cells in vitro, LAK cells from the animals at high risk for the formation of mammary adenocarcinomas had greater cytotoxicity against tumor cell suspensions than LAK cells from the low tumor substrain. 相似文献