首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   466篇
  免费   29篇
  2023年   5篇
  2022年   10篇
  2021年   21篇
  2020年   20篇
  2019年   16篇
  2018年   14篇
  2017年   14篇
  2016年   15篇
  2015年   22篇
  2014年   31篇
  2013年   24篇
  2012年   40篇
  2011年   31篇
  2010年   28篇
  2009年   17篇
  2008年   32篇
  2007年   20篇
  2006年   26篇
  2005年   13篇
  2004年   22篇
  2003年   32篇
  2002年   19篇
  2001年   2篇
  2000年   3篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1982年   1篇
  1977年   1篇
  1970年   1篇
  1965年   1篇
排序方式: 共有495条查询结果,搜索用时 609 毫秒
81.
Ribonuclease III cleaves double-stranded (ds) structures in bacterial RNAs and participates in diverse RNA maturation and decay pathways. Essential insight on the RNase III mechanism of dsRNA cleavage has been provided by crystallographic studies of the enzyme from the hyperthermophilic bacterium, Aquifex aeolicus. However, the biochemical properties of A. aeolicus (Aa)-RNase III and the reactivity epitopes of its substrates are not known. The catalytic activity of purified recombinant Aa-RNase III exhibits a temperature optimum of ~70-85°C, with either Mg2+ or Mn2+ supporting efficient catalysis. Small hairpins based on the stem structures associated with the Aquifex 16S and 23S rRNA precursors are cleaved at sites that are consistent with production of the immediate precursors to the mature rRNAs. Substrate reactivity is independent of the distal box sequence, but is strongly dependent on the proximal box sequence. Structural studies have shown that a conserved glutamine (Q157) in the Aa-RNase III dsRNA-binding domain (dsRBD) directly interacts with a proximal box base pair. Aa-RNase III cleavage of the pre-16S substrate is blocked by the Q157A mutation, which reflects a loss of substrate binding affinity. Thus, a highly conserved dsRBD-substrate interaction plays an important role in substrate recognition by bacterial RNase III.  相似文献   
82.
Integral membrane proteins (IMPs) are essential components of the plasma and organellar membranes of the eukaryotic cell. Non-native IMPs, which can arise as a result of mutations, errors during biosynthesis or cellular stress, can disrupt these membranes and potentially lead to cell death. To protect against this outcome, the cell possesses quality control (QC) systems that detect and dispose of non-native IMPs from cellular membranes. Recent studies suggest that recognition of non-native IMPs by the QC machinery is correlated with the thermodynamic stability of these proteins. Consistent with this, small molecules known as chemical and pharmacological chaperones have been identified that stabilize non-native IMPs and enable them to evade QC. These findings have far-reaching implications for treating human diseases caused by defective IMPs.  相似文献   
83.
As part of our on-going search for bioactive compounds from Scottish plants, two secoiridoid glycosides, swertiamarin and sweroside, have been isolated from the aerial parts of Centaurium erythraea Rafn (Family: Gentianaceae) by reversed-phase preparative HPLC coupled with a photo-diode-array detector. The structures of these compounds were elucidated unambiguously by UV, FABMS and extensive 1D and 2D NMR spectroscopic analyses and also by comparing experimental data with literature data. Antibacterial, free radical scavenging activities and general toxicity of these glycosides have been assessed. Both compounds inhibited the growth of Bacillus cereus, Bacillus subtilis, Citrobacter freundii and Escherichia coli. While swertiamarin was also active against Proteus mirabilis and Serratia marcescens, sweroside inhibited the growth of Staphylococcus epidermidis. Swertiamarin and sweroside exhibited significant general toxicity in brine shrimp lethality bioassay and the LD50 values were 8.0 microg/ml and 34 microg/ml, respectively, whereas that of the positive control podophyllotoxin, a well known cytotoxic lignan, was 2.79 microg/ml. Chemotaxonomic implications of these compounds in the family Gentianaceae have also been discussed briefly.  相似文献   
84.
We investigated the protective role of selenium (Se) in minimizing high temperature-induced damages to rapeseed (Brassica napus L. cv. BINA Sarisha 3) seedlings. Ten-day-old seedlings which had been supplemented with Se (25 μM Na2SeO4) or not were grown separately under control temperature (25 °C) or high temperature (38 °C) for a period of 24 or 48 h in nutrient solution. Heat stress caused decrease in chlorophyll and leaf relative water content (RWC) and increased malondialdehyde (MDA), hydrogen peroxide (H2O2), proline (Pro), and methylglyoxal (MG) contents. Ascorbate (AsA) content decreased at any duration of heat treatment. The content of reduced glutathione (GSH) increased only at 24 h of stress, while glutathione disulfide (GSSG) markedly increased at both duration of heat exposure with associated decrease in GSH/GSSG ratio. Upon heat treatment the activities of ascorbate peroxidase (APX), glutathione S-transferase (GST) and glyoxalase I (Gly I) were increased, while the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and catalase (CAT) were decreased. The activities of glutathione reductase (GR) and glutathione peroxidase (GPX) remained unchanged under heat stress. However, heat-treated seedlings which were supplemented with Se significantly decreased the lipid peroxidation, H2O2, and MG content and enhanced the content of chlorophyll, Pro, RWC, AsA, and GSH as well as the GSH/GSSG ratio. Selenium supplemented heat-treated seedlings also showed enhanced activities of MDHAR, DHAR, GR, GPX, CAT, Gly I, and Gly II as compared to heat-treated seedlings without Se supplementation. This study concludes that exogenous Se application confers heat stress tolerance in rapeseed seedlings by upregulating the antioxidant defense mechanism and methylglyoxal detoxification system.  相似文献   
85.
Slaughtering sick poultry is a risk factor for human infection with highly pathogenic avian influenza and is a common practice in Bangladesh. This paper describes human exposures to poultry during slaughtering process and the customs and rituals influencing these practices in two Bangladeshi rural communities. In 2009, we conducted 30 observations to observe slaughtering practices and 110 in-depth and short interviews and 36 group discussions to explore reasons behind those practices. The villagers reported slaughtering 103 poultry, including 20 sick poultry during 2 months. During different stages of slaughtering, humans, the environment, healthy poultry, and other animals were exposed to poultry blood and body parts. Women performed most of the slaughtering tasks, including evisceration. Defeathering required the most time and involved several persons. During festivals, ceremonies, and rituals, many people gathered and participated in the slaughtering of poultry. Exposure to poultry slaughtering created numerous opportunities for potential avian influenza transmission. Strategies that can be further tested to determine if they reduce the risk of transmission include skinning the carcasses of sick poultry, using hot water for defeathering and cleaning, using a bucket to contain slaughtering blood and carcass, burying the offal and encouraging handwashing.  相似文献   
86.

Background

Japanese encephalitis (JE) virus infection can cause severe disease in humans, resulting in death or permanent neurologic deficits among survivors. Studies indicate that the incidence of JE is high in northwestern Bangladesh. Pigs are amplifying hosts for JE virus (JEV) and a potentially important source of virus in the environment. The objectives of this study were to describe the transmission dynamics of JEV among pigs in northwestern Bangladesh and estimate the potential impact of vaccination to reduce incidence among pigs.

Methodology/Principal Findings

We conducted a comprehensive census of pigs in three JE endemic districts and tested a sample of them for evidence of previous JEV infection. We built a compartmental model to describe JEV transmission dynamics in this region and to estimate the potential impact of pig vaccination. We identified 11,364 pigs in the study area. Previous JEV infection was identified in 30% of pigs with no spatial differences in the proportion of pigs that were seropositive across the study area. We estimated that JEV infects 20% of susceptible pigs each year and the basic reproductive number among pigs was 1.2. The model suggest that vaccinating 50% of pigs each year resulted in an estimated 82% reduction in annual incidence in pigs.

Conclusions/Significance

The widespread distribution of historic JEV infection in pigs suggests they may play an important role in virus transmission in this area. Future studies are required to understand the contribution of pig infections to JE risk in humans and the potential impact of pig vaccination on human disease.  相似文献   
87.
88.
A novel inhibitor of voltage-gated potassium channel was isolated and purified to homogeneity from the venom of the red scorpion Buthus tamulus. The primary sequence of this toxin, named BTK-2, as determined by peptide sequencing shows that it has 32 amino acid residues with six conserved cysteines. The molecular weight of the toxin was found to be 3452 Da. It was found to block the human potassium channel hKv1.1 (IC(50)=4.6 microM). BTK-2 shows 40-70% sequence similarity to the family of the short-chain toxins that specifically block potassium channels. Multiple sequence alignment helps to categorize the toxin in the ninth subfamily of the K+ channel blockers. The modeled structure of BTK-2 shows an alpha/beta scaffold similar to those of the other short scorpion toxins. Comparative analysis of the structure with those of the other toxins helps to identify the possible structure-function relationship that leads to the difference in the specificity of BTK-2 from that of the other scorpion toxins. The toxin can also be used to study the assembly of the hKv1.1 channel.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号