首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   466篇
  免费   29篇
  2023年   5篇
  2022年   10篇
  2021年   21篇
  2020年   20篇
  2019年   16篇
  2018年   14篇
  2017年   14篇
  2016年   15篇
  2015年   22篇
  2014年   31篇
  2013年   24篇
  2012年   40篇
  2011年   31篇
  2010年   28篇
  2009年   17篇
  2008年   32篇
  2007年   20篇
  2006年   26篇
  2005年   13篇
  2004年   22篇
  2003年   32篇
  2002年   19篇
  2001年   2篇
  2000年   3篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1982年   1篇
  1977年   1篇
  1970年   1篇
  1965年   1篇
排序方式: 共有495条查询结果,搜索用时 462 毫秒
111.
OBJECTIVE: To evaluate the usefulness of reclassifying "atypical" diagnoses in reporting biliary cytology using strict morphologic criteria. STUDY DESIGN: Cytologic specimens from 139 patients (direct, alcohol-fixed smears or cytocentrifuge preparations) were evaluated. Diagnoses were benign (70), atypical (36) and malignant (33). Using strict criteria--major (nuclear contour, chromatin pattern) and minor (polarity, cell types, nuclear size, nuclear grooves, nucleoli, mitosis, nuclear/cytoplasmic [N/C] ratio)--atypical cases were reevaluated and reclassified. Follow-up (F/U) was available on all cases. RESULTS: Atypical cases, (36) were reclassified as malignant (26), atypical favor benign (2)/reactive (3) and atypical, not otherwise specified (NOS) (5). Cases reclassified as malignant showed irregular nuclear contours, chromatin irregularities and rare mitosis. Nuclear enlargement, nucleoli and cellularity varied widely in all groups. N/C ratio was increased in most reclassified malignant cases. All 26 malignant reclassifications correlated with F/U of malignancy. Benign and reactive cases (5) were negative for malignancy on F/U (4), and in 1 case a metastatic carcinoma involving the biliary tree was found. In the 5 atypical (NOS) cases, F/U showed malignancy (3) and pancreatitis (2). Cytocentrifuge preparations made in our laboratory were of superior quality when compared to other methods of cell preparation. CONCLUSION: Irregularities in nuclear membrane and abnormal chromatin pattern were the most consistently useful features correlating with malignancy. The sensitivity and specificity of biliary brush cytology can be enhanced by using strict cytomorphologic criteria and proper collection and fixation, all of which decrease atypical diagnoses.  相似文献   
112.
Recovery of alkaline phosphatase (AP) from the periplasm of Escherichia coli using reverse micellar solutions (RMSs) of sodium dioctyl sulfosuccinate (AOT) in aliphatic hydrocarbons has been attempted. A variety of surface-active agents, solvents, and reverse micellar conditions were screened, and an excellent recovery of the enzyme in a concentrated form, with a high purification factor, was obtained in a single-step process. The permeabilization process strongly depended on the water content of the RMS as well as on the amount of water coating the microbial cell surface. The product was almost free from nucleic acids. In addition, because of the low affinity of AOT and the organic solvent for the aqueous phase, contamination by the permeabilizing agents would also be negligible.  相似文献   
113.
The dityrosine bond (DT) is an oxidative covalent cross-link between two tyrosines. DT cross-linking is increasingly identified as a marker of oxidative stress, aging and disease, and has been detected in diverse pathologies. While DT cross- linked proteins have been documented, the consequences of the DT link on the structure and function of the so modified proteins are yet to be understood. With this in view, we have studied the properties of intermolecular DT-dimers of four proteins of diverse functions, namely the enzyme ribonuclease A, the signal protein calmodulin, and the eye lens proteins alpha- and gamma B-crystallins. We find that DT is formed through radical reactions and type I photosensitization (including OH, O2 and OONO), but not by 1O2 and NO2 (which modify his, trp and met more readily). Tyr residues on the surface of the protein make DT bonds (intra- and intermolecular) most readily and preferentially. The conformation of each of these DT-dimers, monitored by spectroscopy, is seen not to be significantly altered in comparison to that of the parent monomer, but the structural stability of the DT cross-linked molecule is lower than that of the parent native monomer. The DT-dimer is denatured at a lower temperature, and at lower concentrations of urea or guanidinium chloride. The effect of DT-cross-linking on the biological activities of these proteins was next studied. The enzymatic activity of the DT-dimer of ribonuclease A is not lost but lowered. DT-dimerization of lens alpha-crystallin did not significantly affect the chaperone-like ability; it inhibits the self-aggregation and precipitation of target proteins just as well as the parent, unmodified alpha-crystallin does. DT-dimerization of gamma B-crystallin is however seen to lead to more ready aggregation and precipitation, a point of interest in cataract. In the case of calmodulin, we could generate both intermolecular and intramolecular DT cross-linking, and study both the DT-dimer and DT-monomer. The DT-dimer binds smooth muscle light chain kinase and also Ca2+, but less efficiently and over a broad concentration range than the native monomer. The intramolecular DT-monomer is weaker in all these respects, presumably since it is structurally more constrained. These results suggest that DT cross-linking of globular proteins weakens their structural stability and compromises (though does not abolish) their biological activity, both of which are pathologically relevant. The intramolecular DT cross-link would appear to lead to more severe structural and functional consequences.  相似文献   
114.
The dityrosine bond (DT) is an oxidative covalent cross-link between two tyrosines. DT cross-linking is increasingly identified as a marker of oxidative stress, aging and disease, and has been detected in diverse pathologies. While DT cross- linked proteins have been documented, the consequences of the DT link on the structure and function of the so modified proteins are yet to be understood. With this in view, we have studied the properties of intermolecular DT-dimers of four proteins of diverse functions, namely the enzyme ribonuclease A, the signal protein calmodulin, and the eye lens proteins alpha- and gamma B-crystallins. We find that DT is formed through radical reactions and type I photosensitization (including .OH, O2- and OONO-), but not by 1O2 and NO, (which modify his, trp and met more readily). Tyr residues on the surface of the protein make DT bonds (intra- and intermolecular) most readily and preferentially. The conformation of each of these DT-dimers, monitored by spectroscopy, is seen not to be significantly altered in comparison to that of the parent monomer, but the structural stability of the DT cross-linked molecule is lower than that of the parent native monomer. The DT-dimer is denatured at a lower temperature, and at lower concentrations of urea or guanidinium chloride. The effect of DT-cross-linking on the biological activities of these proteins was next studied. The enzymatic activity of the DT-dimer of ribonuclease A is not lost but lowered. DT-dimerization of lens alpha-crystallin did not significantly affect the chaperone-like ability; it inhibits the self-aggregation and precipitation of target proteins just as well as the parent, unmodified alpha-crystallin does. DT-dimerization of gamma B-crystallin is however seen to lead to more ready aggregation and precipitation, a point of interest in cataract. In the case of calmodulin, we could generate both intermolecular and intramolecular DT cross-linking, and study both the DT-dimer and DT-monomer. The DT-dimer binds smooth muscle light chain kinase and also Ca2+, but less efficiently and over a broad concentration range than the native monomer. The intramolecular DT-monomer is weaker in all these respects, presumably since it is structurally more constrained. These results suggest that DT cross-linking of globular proteins weakens their structural stability and compromises (though does not abolish) their biological activity, both of which are pathologically relevant. The intramolecular DT cross-link would appear to lead to more severe structural and functional consequences.  相似文献   
115.
The CD45 antigen is essential for normal antigen receptor-mediated signalling in lymphocytes, and different patterns of splicing of CD45 are associated with distinct functions in lymphocytes. Abnormal CD45 splicing has been recognized in humans, caused by a C77G transversion in the gene encoding CD45 (PTPRC). Recently the C77G polymorphism has been associated with multiple sclerosis and increased susceptibility to HIV-1 infection. These studies suggest that the regulation of CD45 splicing may be critical for the proper function of the immune system. Because of these data we examined the frequency of the C77G allele in African and Asian populations from countries with high or low prevalence of HIV infection. Here we report that the variant CD45 C77G allele is absent in African populations. We further show that populations living in the Pamir mountains of Central Asia have a very high prevalence of the C77G variant.  相似文献   
116.
117.
118.
119.
The possible contribution of extracellular constitutively produced chitin deacetylase by Metarhizium anisopliae in the process of insect pathogenesis has been evaluated. Chitin deacetylase converts chitin, a beta-1,4-linked N-acetylglucosamine polymer, into its deacetylated form chitosan, a glucosamine polymer. When grown in a yeast extract-peptone medium, M. anisopliae constitutively produced the enzymes protease, lipase, and two chitin-metabolizing enzymes, viz. chitin deacetylase (CDA) and chitosanase. Chitinase activity was induced in chitin-containing medium. Staining of 7.5% native polyacrylamide gels at pH 8.9 revealed CDA activity in three bands. SDS-PAGE showed that the apparent molecular masses of the three isoforms were 70, 37, and 26 kDa, respectively. Solubilized melanin (10microg) inhibited chitinase activity, whereas CDA was unaffected. Following germination of M. anisopliae conidia on isolated Helicoverpa armigera, cuticle revealed the presence of chitosan by staining with 3-methyl-2-benzothiazoline hydrazone. Blue patches of chitosan were observed on cuticle, indicating conversion of chitin to chitosan. Hydrolysis of chitin with constitutively produced enzymes of M. anisopliae suggested that CDA along with chitosanase contributed significantly to chitin hydrolysis. Thus, chitin deacetylase was important in initiating pathogenesis of M. anisopliae softening the insect cuticle to aid mycelial penetration. Evaluation of CDA and chitinase activities in other isolates of Metarhizium showed that those strains had low chitinase activity but high CDA activity. Chemical assays of M. anisopliae cell wall composition revealed the presence of chitosan. CDA may have a dual role in modifying the insect cuticular chitin for easy penetration as well as for altering its own cell walls for defense from insect chitinase.  相似文献   
120.
A gene (apr 46) encoding a protease was cloned from Bacillus licheniformis RSP-09-37. It had an ORF of 1725 bp, encoding a pre-protein of 575 amino acids (63.2 kDa), which was functionally expressed and processed in E. coli JM 109. The mature protein, Apr 46, consists of 500 amino acids with a calculated molecular mass of 55 kDa. This protease shows 29-50% homology to known serine proteases and conserved domains. N-terminal sequencing suggests that Apr 46 protease is identical to a B. licheniformis RSP-09-37 protease, which is further supported by a similar stability in acetonitrile.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号