首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5216篇
  免费   383篇
  国内免费   1篇
  2023年   30篇
  2022年   62篇
  2021年   117篇
  2020年   72篇
  2019年   93篇
  2018年   127篇
  2017年   111篇
  2016年   178篇
  2015年   227篇
  2014年   270篇
  2013年   364篇
  2012年   437篇
  2011年   431篇
  2010年   252篇
  2009年   222篇
  2008年   319篇
  2007年   326篇
  2006年   298篇
  2005年   270篇
  2004年   228篇
  2003年   203篇
  2002年   201篇
  2001年   50篇
  2000年   29篇
  1999年   44篇
  1998年   62篇
  1997年   28篇
  1996年   42篇
  1995年   51篇
  1994年   27篇
  1993年   40篇
  1992年   27篇
  1991年   26篇
  1990年   17篇
  1989年   15篇
  1988年   14篇
  1987年   22篇
  1986年   16篇
  1985年   16篇
  1984年   15篇
  1983年   15篇
  1982年   15篇
  1981年   20篇
  1980年   20篇
  1977年   11篇
  1976年   15篇
  1975年   18篇
  1974年   12篇
  1973年   11篇
  1972年   12篇
排序方式: 共有5600条查询结果,搜索用时 31 毫秒
111.
Abstract

Parallel-stranded (ps) oligonucleotide duplexes containing several new base pairs formed between 7-deazaisoguanine and cytosine, 8-aza-7-deaza-isoguanine and cytosine, and 5-aza-7-deaza guanine and guanine are described. The stability of the pshybrids increased if the duplex contains 8-aza-7-deazaisoguanine instead of isoguanine and is decreased by 7-deazaisoguanine incorporation. The purine-purine base pair between 5-aza-7-deazaguanine and guanine was found to be more stable than that of 5-methylisocytosine with guanine.  相似文献   
112.
Programmed cell death is an event displayed by many different organisms along the evolutionary scale. In plants, programmed cell death is necessary for development and the hypersensitive response to stress or pathogenic infection. A common feature in programmed cell death across organisms is the translocation of cytochrome c from mitochondria to the cytosol. To better understand the role of cytochrome c in the onset of programmed cell death in plants, a proteomic approach was developed based on affinity chromatography and using Arabidopsis thaliana cytochrome c as bait. Using this approach, ten putative new cytochrome c partners were identified. Of these putative partners and as indicated by bimolecular fluorescence complementation, nine of them bind the heme protein in plant protoplasts and human cells as a heterologous system. The in vitro interaction between cytochrome c and such soluble cytochrome c-targets was further corroborated using surface plasmon resonance. Taken together, the results obtained in the study indicate that Arabidopsis thaliana cytochrome c interacts with several distinct proteins involved in protein folding, translational regulation, cell death, oxidative stress, DNA damage, energetic metabolism, and mRNA metabolism. Interestingly, some of these novel Arabidopsis thaliana cytochrome c-targets are closely related to those for Homo sapiens cytochrome c (Martínez-Fábregas et al., unpublished). These results indicate that the evolutionarily well-conserved cytosolic cytochrome c, appearing in organisms from plants to mammals, interacts with a wide range of targets on programmed cell death. The data have been deposited to the ProteomeXchange with identifier PXD000280.Programmed cell death (PCD)1 is a fundamental event for the development of multicellular organisms and the homeostasis of their tissues. It is an evolutionarily conserved mechanism present in organisms ranging from yeast to mammals (13).In mammals, cytochrome c (Cc) and dATP bind to apoptosis protease-activating factor-1 (Apaf-1) in the cytoplasm, a process leading to the formation of the Apaf-1/caspase-9 complex known as apoptosome. This apoptosome subsequently activates caspases-3 and -7 (4, 5). In other organisms, such as Caenorhabditis elegans or Drosophila melanogaster, however, Cc is not essential for the assembly and activation of the apoptosome (6) despite the presence of proteins homologous to Apaf-1—cell death abnormality-4 (CED-4) in C. elegans and Drosophila Apaf-1-related killer (Dark) in D. melanogaster—which have been found to be essential for caspase cascade activation. Furthermore, other organisms such as Arabidopsis thaliana lack Apaf-1 (7). In fact, only highly distant caspase homologues (metacaspases) (8, 9), serine proteases (saspases) (10), phytaspases (11) and VEIDases (1214) with caspase-like activity have been detected in plants; however, their targets remain veiled and whether they are activated by Cc remains unclear.Intriguingly, the release of Cc from mitochondria into the cytoplasm during the onset of PCD is an evolutionarily conserved event found in organisms ranging from yeast (15) and plants (16) to flies (17), and mammals (18). However, understanding of the roles of this phenomenon in different species can be said to be uneven at best. In fact, the release of Cc from mitochondria has thus far been considered a random event in all organisms, save mammals. Thus, the participation of Cc in the onset and progression of PCD needs to be further elucidated.Even in the case of mammals, the role(s) of Cc in the cytoplasm during PCD remain(s) controversial. Recently, new putative functions of Cc, going beyond the already-established apoptosome assembly process, have been proposed in the nucleus (19, 20) and the endoplasmic reticulum (2123). Neither these newly proposed functions nor other arising functions, such as oxidative stress (24), are as yet fully understood. This current state of affairs demands deeper exploration of the additional roles played by Cc in nonmammalian species.In this study, putative novel Cc-partners involved in plant PCD were identified. For this identification, a proteomic approach was employed based on affinity chromatography and using Cc as bait. The Cc-interacting proteins were identified using nano-liquid chromatography tandem mass spectrometry (NanoLC-MS/MS). These Cc-partners were then further confirmed in vivo through bimolecular fluorescence complementation (BiFC) in A. thaliana protoplasts and human HEK293T cells, as a heterologous system. Finally, the Cc-GLY2, Cc-NRP1 and Cc-TCL interactions were corroborated in vitro using surface plasmon resonance (SPR).These results indicate that Cc is able to interact with targets in the plant cell cytoplasm during PCD. Moreover, they provide new ways of understanding why Cc release is an evolutionarily well-conserved event, and allow us to propose Cc as a signaling messenger, which somehow controls different essential events during PCD.  相似文献   
113.
People with Down syndrome, a frequent genetic disorder in humans, have increased risk of health problems associated with this condition. One clinical feature of Down syndrome is the increased prevalence and severity of periodontal disease in comparison with the general population. Because saliva plays an important role in maintaining oral health, in the present study the salivary proteome of Down syndrome subjects was investigated to explore modifications with respect to healthy subjects. Whole saliva of 36 Down syndrome subjects, divided in the age groups 10–17 yr and 18–50 yr, was analyzed by a top-down proteomic approach, based on the high performance liquid chromatography-electrospray ionization–MS analysis of the intact proteins and peptides, and the qualitative and quantitative profiles were compared with sex- and age-matched control groups. The results showed the following interesting features: 1) as opposed to controls, in Down syndrome subjects the concentration of the major salivary proteins of gland origin did not increase with age; as a consequence concentration of acidic proline rich proteins and S cystatins were found significantly reduced in older Down syndrome subjects with respect to matched controls; 2) levels of the antimicrobial α-defensins 1 and 2 and histatins 3 and 5 were significantly increased in whole saliva of older Down syndrome subjects with respect to controls; 3) S100A7, S100A8, and S100A12 levels were significantly increased in whole saliva of Down syndrome subjects in comparison with controls. The increased level of S100A7 and S100A12 may be of particular interest as a biomarker of early onset Alzheimer''s disease, which is frequently associated with Down syndrome.Down syndrome (DS)1 is a frequent genetic disorder in humans characterized by premature aging (1). A clinical feature of people with DS is the increased prevalence and severity of periodontal disease compared with age-matched subjects of similar levels of intellectual impairment and compared with the general population (2). Common conditions observed in DS are marginal gingivitis, acute and subacute necrotizing gingivitis, advanced periodontitis, gingival recession, and pocket formation (3, 4). It is known that saliva plays an important role in maintaining oral and dental health, because of the presence of a variety of antimicrobial peptides mainly derived from gland secretion, oral epithelial cells, and neutrophils (5). Several papers reported that neutrophils and T-lymphocyte function is impaired in people with DS (69). However, the salivary secretion of the antimicrobial LL-37 in young individuals with DS was found normal (10). A review of the literature (11, 12) reveals only sporadic and contradictory reports that attempt to explain the role of saliva in the oral health of subjects with DS, and on the whole, information on the biochemical composition of their saliva is scarce. On the basis of the above information, in the present study, we proposed to investigate the salivary proteome of DS subjects by an intact protein-based “top-down” approach. The spectrum of salivary peptides of DS subjects was compared with that of sex and age-matched healthy control groups to determine qualitative and quantitative differences. Interestingly, the results showed that several members of the S100A family, which possess different biological functions, and also described as potential markers of the Alzheimer Disease, were significantly increased in saliva of Down syndrome subjects with respect to controls.  相似文献   
114.

Background

Ultrasound is a valuable non-invasive tool used in obstetrics and gynecology to monitor the growth and well being of the human fetus. The laboratory mouse has recently emerged as an appropriate model for fetal and perinatal studies because morphogenetic processes in mice exhibit adequate homology to those in humans, and genetic manipulations are relatively simple to perform in mice. High-frequency ultrasound (HFUS) has recently become available for small animal preclinical imaging and can be used to study pregnancy and development in the mouse. The objective of the current study was to assess the main applications of HFUS in the evaluation of fetal growth and placental function and to better understand human congenital diseases.

Methodology/Principal Findings

On each gestational day, at least 5 dams were monitored with HFUS; a total of ∼200 embryos were examined. Because it is not possible to measure each variable for the entire duration of the pregnancy, the parameters were divided into three groups as a function of the time at which they were measured. Univariate analysis of the relationship between each measurement and the embryonic day was performed using Spearman’s rank correlation (Rs). Continuous linear regression was adopted for multivariate analysis of significant parameters. All statistical tests were two-sided, and a p value of 0.05 was considered statistically significant.

Conclusions/Significance

The study describes the main applications of HFUS to assess changes in phenotypic parameters in the developing CD1 mouse embryo and fetus during pregnancy and to evaluating physiological fetal and placental growth and the development of principal organs such as the heart, kidney, liver, brain and eyes in the embryonic mouse. A database of normal structural and functional parameters of mouse development will provide a useful tool for the better understanding of morphogenetic and cardiovascular anomalies in transgenic and mutant mouse models.  相似文献   
115.

Background

The uptake of sulphur-containing compounds plays a pivotal role in the physiology of bacteria that live in aerobic soils where organosulfur compounds such as sulphonates and sulphate esters represent more than 95% of the available sulphur. Until now, no information has been available on the uptake of sulphonates by bacterial plant pathogens, particularly those of the Xanthomonas genus, which encompasses several pathogenic species. In the present study, we characterised the alkanesulphonate uptake system (Ssu) of Xanthomonas axonopodis pv. citri 306 strain (X. citri), the etiological agent of citrus canker.

Methodology/Principal Findings

A single operon-like gene cluster (ssuEDACB) that encodes both the sulphur uptake system and enzymes involved in desulphurisation was detected in the genomes of X. citri and of the closely related species. We characterised X. citri SsuA protein, a periplasmic alkanesulphonate-binding protein that, together with SsuC and SsuB, defines the alkanesulphonate uptake system. The crystal structure of SsuA bound to MOPS, MES and HEPES, which is herein described for the first time, provides evidence for the importance of a conserved dipole in sulphate group coordination, identifies specific amino acids interacting with the sulphate group and shows the presence of a rather large binding pocket that explains the rather wide range of molecules recognised by the protein. Isolation of an isogenic ssuA-knockout derivative of the X. citri 306 strain showed that disruption of alkanesulphonate uptake affects both xanthan gum production and generation of canker lesions in sweet orange leaves.

Conclusions/Significance

The present study unravels unique structural and functional features of the X. citri SsuA protein and provides the first experimental evidence that an ABC uptake system affects the virulence of this phytopathogen.  相似文献   
116.
The diversity and specificity of microbial communities in marine environments is a key aspect of the ecology and evolution of both the eukaryotic hosts and their associated prokaryotes. Marine sponges harbor phylogenetically diverse and complex microbial lineages. Here, we investigated the sponge bacterial community and distribution patterns of microbes in three sympatric intertidal marine demosponges, Hymeniacidon perlevis, Ophlitaspongia papilla and Polymastia penicillus, from the Atlantic coast of Portugal using classical isolation techniques and 16S rRNA gene clone libraries. Microbial composition assessment, with nearly full-length 16S rRNA gene sequences (ca. 1400 bp) from the isolates (n = 31) and partial sequences (ca. 280 bp) from clone libraries (n = 349), revealed diverse bacterial communities and other sponge-associated microbes. The majority of the bacterial isolates were members of the order Vibrionales and other symbiotic bacteria like Pseudovibrio ascidiaceiocola, Roseobacter sp., Hahellaceae sp. and Cobetia sp. Extended analyses using ecological metrics comprising 142 OTUs supported the clear differentiation of bacterial community profiles among the sponge hosts and their ambient seawater. Phylogenetic analyses were insightful in defining clades representing shared bacterial communities, particularly between H. perlevis and the geographically distantly-related H. heliophila, but also among other sponges. Furthermore, we also observed three distinct and unique bacterial groups, Betaproteobactria (∼81%), Spirochaetes (∼7%) and Chloroflexi (∼3%), which are strictly maintained in low-microbial-abundance host species O. papilla and P. penicillus. Our study revealed the largely generalist nature of microbial associations among these co-occurring intertidal marine sponges.  相似文献   
117.
Here, we show the morphological events associated with organelle segregation and their timing in the cell cycle of a reference strain of Leishmania (L.) amazonensis promastigotes, the main causative agent of Tegumentary leishmaniasis in the Americas. We show evidences that during the cell cycle, L. amazonensis promastigotes present two distinct modes of nucleus and kinetoplast segregation, which occur in different temporal order in different proportions of cells. We used DAPI-staining and EdU-labeling to monitor the segregation of DNA-containing organelles and DNA replication in wild-type parasites. The emergence of a new flagellum was observed using a specific monoclonal antibody. The results show that L. amazonensis cell cycle division is peculiar, with 65% of the dividing cells duplicating the kinetoplast before the nucleus, and the remaining 35% doing the opposite or duplicating both organelles concomitantly. In both cases, the new flagellum appeared during S to G2 phase in 1N1K cells and thus before the segregation of both DNA-containing organelles; however, we could not determine the exact timing of flagellar synthesis. Most of these results were confirmed by the synchronization of parasites using hydroxyurea. Altogether, our data show that during the cell cycle of L. amazonensis promastigotes, similarly to L. donovani, the segregation of nucleus and kinetoplast do not follow a specific order, especially when compared to other trypanosomatids, reinforcing the idea that this characteristic seems to be species-specific and may represent differences in cellular biology among members of the Leishmania genus.  相似文献   
118.

Background

Insulin sensitivity decreases at puberty transition, but little information has been provided on its earlier time-course. Aim of the present study was to describe the time-course of insulin sensitivity in severely obese children at the transition from preschool to school age.

Research design and methods

Retrospective study of a cohort of 47 severely obese [Body Mass Index (BMI) ≥99° percentile] preschoolers evaluated twice, once between 2 and 6 years of age, and once before age 8. Glucose tolerance, Whole Body Insulin Sensitivity Index (WBISI), Insulinogenic Index (IGI); β-cell demand index (BCDI) and Insulin Secretion-Sensitivity Index 2 (ISSI-2) were longitudinally estimated during the oral glucose tolerance test.

Results

After a median follow-up of 2.23 (1–4.52) y, obese patients showed significant decrease in WBISI (p<0.0001), and increase in fasting (p = 0.005) and 2 h glucose (2HG, p = 0.001). One child in preschool age and 4 school age children presented with 2HG between 7.8–11.1 mmol/l. Best predictors of WBISI, 2HG and BCDI in the school age were changes in BMI z-score (R2 = 0.309; p = 0.002; β = −0.556), ISSI-2 (R2 = 0.465; p<0.0001; β = −0.682), and BMI z-score (R2 = 0.246; p = 0.008; 0.496), respectively.

Conclusions

In morbidly obese children, insulin sensitivity seems to decline even before pubertal transition, but changes in total adiposity can only partially explain this variation.  相似文献   
119.
Polysialic acid (polySia), an α-2,8-glycosidically linked polymer of sialic acid, is a developmentally regulated post-translational modification predominantly found on NCAM (neuronal cell adhesion molecule). Whilst high levels are expressed during development, peripheral adult organs do not express polySia-NCAM. However, tumours of neural crest-origin re-express polySia-NCAM: its occurrence correlates with aggressive and invasive disease and poor clinical prognosis in different cancer types, notably including small cell lung cancer (SCLC), pancreatic cancer and neuroblastoma. In neuronal development, polySia-NCAM biosynthesis is catalysed by two polysialyltransferases, ST8SiaII and ST8SiaIV, but it is ST8SiaII that is the prominent enzyme in tumours. The aim of this study was to determine the effect of ST8SiaII inhibition by a small molecule on tumour cell migration, utilising cytidine monophosphate (CMP) as a tool compound. Using immunoblotting we showed that CMP reduced ST8iaII-mediated polysialylation of NCAM. Utilizing a novel HPLC-based assay to quantify polysialylation of a fluorescent acceptor (DMB-DP3), we demonstrated that CMP is a competitive inhibitor of ST8SiaII (K i = 10 µM). Importantly, we have shown that CMP causes a concentration-dependent reduction in tumour cell-surface polySia expression, with an absence of toxicity. When ST8SiaII-expressing tumour cells (SH-SY5Y and C6-STX) were evaluated in 2D cell migration assays, ST8SiaII inhibition led to significant reductions in migration, while CMP had no effect on cells not expressing ST8SiaII (DLD-1 and C6-WT). The study demonstrates for the first time that a polysialyltransferase inhibitor can modulate migration in ST8SiaII-expressing tumour cells. We conclude that ST8SiaII can be considered a druggable target with the potential for interfering with a critical mechanism in tumour cell dissemination in metastatic cancers.  相似文献   
120.
Some non-pathogenic trypanosomatids maintain a mutualistic relationship with a betaproteobacterium of the Alcaligenaceae family. Intensive nutritional exchanges have been reported between the two partners, indicating that these protozoa are excellent biological models to study metabolic co-evolution. We previously sequenced and herein investigate the entire genomes of five trypanosomatids which harbor a symbiotic bacterium (SHTs for Symbiont-Haboring Trypanosomatids) and the respective bacteria (TPEs for Trypanosomatid Proteobacterial Endosymbiont), as well as two trypanosomatids without symbionts (RTs for Regular Trypanosomatids), for the presence of genes of the classical pathways for vitamin biosynthesis. Our data show that genes for the biosynthetic pathways of thiamine, biotin, and nicotinic acid are absent from all trypanosomatid genomes. This is in agreement with the absolute growth requirement for these vitamins in all protozoa of the family. Also absent from the genomes of RTs are the genes for the synthesis of pantothenic acid, folic acid, riboflavin, and vitamin B6. This is also in agreement with the available data showing that RTs are auxotrophic for these essential vitamins. On the other hand, SHTs are autotrophic for such vitamins. Indeed, all the genes of the corresponding biosynthetic pathways were identified, most of them in the symbiont genomes, while a few genes, mostly of eukaryotic origin, were found in the host genomes. The only exceptions to the latter are: the gene coding for the enzyme ketopantoate reductase (EC:1.1.1.169) which is related instead to the Firmicutes bacteria; and two other genes, one involved in the salvage pathway of pantothenic acid and the other in the synthesis of ubiquinone, that are related to Gammaproteobacteria. Their presence in trypanosomatids may result from lateral gene transfer. Taken together, our results reinforce the idea that the low nutritional requirement of SHTs is associated with the presence of the symbiotic bacterium, which contains most genes for vitamin production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号