首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4986篇
  免费   390篇
  国内免费   1篇
  2023年   21篇
  2022年   38篇
  2021年   91篇
  2020年   59篇
  2019年   68篇
  2018年   97篇
  2017年   95篇
  2016年   166篇
  2015年   215篇
  2014年   240篇
  2013年   329篇
  2012年   397篇
  2011年   376篇
  2010年   238篇
  2009年   204篇
  2008年   310篇
  2007年   314篇
  2006年   279篇
  2005年   271篇
  2004年   230篇
  2003年   208篇
  2002年   213篇
  2001年   60篇
  2000年   40篇
  1999年   53篇
  1998年   70篇
  1997年   30篇
  1996年   43篇
  1995年   52篇
  1994年   26篇
  1993年   43篇
  1992年   38篇
  1991年   33篇
  1990年   35篇
  1989年   27篇
  1988年   19篇
  1987年   34篇
  1986年   23篇
  1985年   21篇
  1984年   19篇
  1983年   22篇
  1982年   17篇
  1981年   18篇
  1980年   20篇
  1977年   13篇
  1976年   20篇
  1975年   19篇
  1974年   16篇
  1973年   14篇
  1972年   11篇
排序方式: 共有5377条查询结果,搜索用时 31 毫秒
931.
The plant plasma membrane H(+)-ATPase is regulated by an auto-inhibitory C-terminal domain that can be displaced by phosphorylation of the penultimate residue, a Thr, and the subsequent binding of 14-3-3 proteins. By mass spectrometric analysis of plasma membrane H(+)-ATPase isoform 2 (PMA2) isolated from Nicotiana tabacum plants and suspension cells, we identified a new phosphorylation site, Thr-889, in a region of the C-terminal domain upstream of the 14-3-3 protein binding site. This residue was mutated into aspartate or alanine, and the mutated H(+)-ATPases expressed in the yeast Saccharomyces cerevisiae. Unlike wild-type PMA2, which could replace the yeast H(+)-ATPases, the PMA2-Thr889Ala mutant did not allow yeast growth, whereas the PMA2-Thr889Asp mutant resulted in improved growth and increased H(+)-ATPase activity despite reduced phosphorylation of the PMA2 penultimate residue and reduced 14-3-3 protein binding. To determine whether the regulation taking place at Thr-889 was independent of phosphorylation of the penultimate residue and 14-3-3 protein binding, we examined the effect of combining the PMA2-Thr889Asp mutation with mutations of other residues that impair phosphorylation of the penultimate residue and/or binding of 14-3-3 proteins. The results showed that in yeast, PMA2 Thr-889 phosphorylation could activate H(+)-ATPase if PMA2 was also phosphorylated at its penultimate residue. However, binding of 14-3-3 proteins was not required, although 14-3-3 binding resulted in further activation. These results were confirmed in N. tabacum suspension cells. These data define a new H(+)-ATPase activation mechanism that can take place without 14-3-3 proteins.  相似文献   
932.
Serine hydroxymethyltransferases (SHMs) are important enzymes of cellular one-carbon metabolism and are essential for the photorespiratory glycine-into-serine conversion in leaf mesophyll mitochondria. In Arabidopsis (Arabidopsis thaliana), SHM1 has been identified as the photorespiratory isozyme, but little is known about the very similar SHM2. Although the mitochondrial location of SHM2 can be predicted, some data suggest that this particular isozyme could be inactive or not targeted into mitochondria. We report that SHM2 is a functional mitochondrial SHM. In leaves, the presequence of SHM2 selectively hinders targeting of the enzyme into mesophyll mitochondria. For this reason, the enzyme is confined to the vascular tissue of wild-type Arabidopsis, likely the protoxylem and/or adjacent cells, where it occurs together with SHM1. The resulting exclusion of SHM2 from the photorespiratory environment of mesophyll mitochondria explains why this enzyme cannot substitute for SHM1 in photorespiratory metabolism. Unlike the individual shm1 and shm2 null mutants, which require CO(2)-enriched air to inhibit photorespiration (shm1) or do not show any visible impairment (shm2), double-null mutants cannot survive in CO(2)-enriched air. It seems that SHM1 and SHM2 operate in a redundant manner in one-carbon metabolism of nonphotorespiring cells with a high demand of one-carbon units; for example, during lignification of vascular cells. We hypothesize that yet unknown kinetic properties of SHM2 might render this enzyme unsuitable for the high-folate conditions of photorespiring mesophyll mitochondria.  相似文献   
933.
A central step in nucleoside and nucleobase salvage pathways is the hydrolysis of nucleosides to their respective nucleobases. In plants this is solely accomplished by nucleosidases (EC 3.2.2.x). To elucidate the importance of nucleosidases for nucleoside degradation, general metabolism, and plant growth, thorough phenotypic and biochemical analyses were performed using Arabidopsis thaliana T-DNA insertion mutants lacking expression of the previously identified genes annotated as uridine ribohydrolases (URH1 and URH2). Comprehensive functional analyses of single and double mutants demonstrated that both isoforms are unimportant for seedling establishment and plant growth, while one participates in uridine degradation. Rather unexpectedly, nucleoside and nucleotide profiling and nucleosidase activity screening of soluble crude extracts revealed a deficiency of xanthosine and inosine hydrolysis in the single mutants, with substantial accumulation of xanthosine in one of them. Mixing of the two mutant extracts, and by in vitro activity reconstitution using a mixture of recombinant URH1 and URH2 proteins, both restored activity, thus providing biochemical evidence that at least these two isoforms are needed for inosine and xanthosine hydrolysis. This mutant study demonstrates the utility of in vivo systems for the examination of metabolic activities, with the discovery of the new substrate xanthosine and elucidation of a mechanism for expanding the nucleosidase substrate spectrum.  相似文献   
934.
Based on eight years of annual censuses in secondary forests in central Amazonia, we compared successional dynamics in areas presenting alternative states due to different land use histories. Sites that had been clearcut without subsequent use are dominated by the pioneer genus Cecropia, but their understory is characterized by a diverse species assemblage. In contrast, areas clearcut and then used for pasture are dominated by the genus Vismia, forming nearly monogeneric stands. We evaluated whether such patterns were the outcome of differences in community compensatory trends, leading to a dynamic system of sequential replacement of species in Cecropia stands, and to a persistent stage of succession in Vismia stands. Floristic turnover in Cecropia stands showed strong and consistent negative frequency dependence. In contrast, Vismia stands exhibited little or no frequency dependence, likely due to local competitive interactions or priority effects. In these stands, species of the genera Vismia and Bellucia remained dominant throughout the monitoring period, whereas species initially of low abundance and frequency remained so. Differences in recruitment were the major driver of these alternative states. As species colonization proceeds, we expect dominance in the Vismia stands to diminish, albeit slowly. Our approach proved to be a useful tool for comparing species turnover in systems presenting alternative states.  相似文献   
935.
A. McFayden and G.E. Hutchinson defined a niche as a multidimensional space or hypervolume within the environment that allows an individual or a species to survive, we consider niches as a fundamental ecological variable that regulate species' composition and relation in ecosystems. Successively the niche concept has been associated to the genetic term "phenotype" by MacArthurstressing the importance on what a species or a genome can show outside, either in the environmental functions or in body characteristics. Several indexes have been developed to evaluate the grade of overlapping and similarities of species' niches, even utilizing the theory of information. However, which are the factors that determine the number of species that can coexist in a determinate environment and why a generalist species do not compete until the exclusion of the remaining species to maximize its fitness, is still quite unknown. Moreover, there are few studies and theories that clearly explain why the number of niches is so variable through ecosystems and how can several species live in the same basal niche, intended in a comprehensive sense as the range of basic conditions (temperature, humidity, food-guild, etc.). Here I show that the number of niches in an ecosystem depends on the number of species present in a particular moment and that the species themselves allow the enhancement of niches in terms of space and number. I found that using a three-dimensional model as hypervolume and testing the theory on a Mediterranean, temperate and tropical forest ecosystem it is possible to demonstrate that each species plays a fundamental role in facilitating the colonization by other species by simply modifying the environment and exponentially increasing the available niches' space and number. I resumed these hypothesis, after some preliminary empiric tests, in the Biodiversity-related Niches Differentiation Theory (BNDT), stressing with these definition that the process of niches differentiation is strictly addressed by species. This approach has various consequences, first in consideration of relations among species and second in terms of a better understanding of cooperation/competition dynamics.  相似文献   
936.

Background

Fosfomycin is widely used to treat urinary tract and pediatric gastrointestinal infections of bacteria. It is supposed that this antibiotic enters cells via two transport systems, including the bacterial Glycerol-3-phosphate Transporter (GlpT). Impaired function of GlpT is one mechanism for fosfomycin resistance.

Methods

The interaction of fosfomycin with the recombinant and purified GlpT of Escherichia coli reconstituted in liposomes has been studied. IC50 and the half-saturation constant of the transporter for external fosfomycin (Ki) were determined by transport assay of [14C]glycerol-3-phosphate catalyzed by recombinant GlpT. Efficacy of fosfomycin on growth rates of GlpT defective bacteria strains transformed with recombinant GlpT was measured.

Results

Fosfomycin, externally added to the proteoliposomes, poorly inhibited the glycerol-3-phosphate/glycerol-3-phosphate antiport catalyzed by the reconstituted transporter with an IC50 of 6.4 mM. A kinetic analysis revealed that the inhibition was completely competitive, that is, fosfomycin interacted with the substrate-binding site and the Ki measured was 1.65 mM. Transport assays performed with proteoliposomes containing internal fosfomycin indicate that it was not very well transported by GlpT. Complementation study, performed with GlpT defective bacteria strains, indicated that the fosfomycin resistance, beside deficiency in antibiotic transporter, could be due to other gene defects.

Conclusions

The poor transport observed in a reconstituted system together with the high value of Ki and the results of complementation study well explain the usual high dosage of this drug for the treatment of the urinary tract infections.

General significance

This is the first report regarding functional analysis of interaction between fosfomycin and GlpT.  相似文献   
937.
938.
Proteinases produced by Candida albicans are one kind of virulence factor expressed that contribute to adherence and invasion of host tissue. Proteinase inhibitor of human immunodeficiency virus in experimental candidiasis suggested reduction in fungal infection, and medicinal plants could be a source of alternative agent to prevent diseases. In this study, we investigated the production of proteinases by C. albicans from clinical isolates and the action of plant extracts against strains of C. albicans and its synthesized proteinases, comparing with antifungal fluconazole and amphotericin B and proteinase inhibitors pepstatin A, amprenavir, and ritonavir. The results reported here showed that these extracts have a certain kind of action and that the search for new antifungal agents could be found at the plants.  相似文献   
939.
The present study evaluated the impact of moderate exercise training on the cardiac tolerance to acute pressure overload. Male Wistar rats were randomly submitted to exercise training or sedentary lifestyle for 14 wk. At the end of this period, the animals were anaesthetized, mechanically ventilated, and submitted to hemodynamic evaluation with biventricular tip pressure manometers. Acute pressure overload was induced by banding the descending aorta to induce a 60% increase of peak systolic left ventricular pressure during 120 min. This resulted in the following experimental groups: 1) sedentary without banding (SED + Sham), 2) sedentary with banding (SED + Band), and 3) exercise trained with banding (EX + Band). In response to aortic banding, SED + Band animals could not sustain the 60% increase of peak systolic pressure for 120 min, even with additional narrowing of the banding. This was accompanied by a reduction of dP/dt(max) and dP/dt(min) and a prolongation of the time constant tau, indicating impaired systolic and diastolic function. This impairment was not observed in EX + Band (P < 0.05 vs. SED + Band). Additionally, compared with SED + Band, EX + Band presented less myocardial damage, exhibited attenuated protein expression of active caspase-3 and NF-κB (P < 0.016), and showed less protein carbonylation and nitration (P < 0.05). These findings support our hypothesis that exercise training has a protective role in the modulation of the early cardiac response to pressure overload.  相似文献   
940.
Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) are neurodegenerative diseases that are characterized by intra-neuronal inclusions of Lewy bodies in distinct brain regions. These inclusions consist mainly of aggregated α-synuclein (α-syn) protein. The present study used immunoprecipitation combined with nanoflow liquid chromatography (LC) coupled to high resolution electrospray ionization Fourier transform ion cyclotron resonance tandem mass spectrometry (ESI-FTICR-MS/MS) to determine known and novel isoforms of α-syn in brain tissue homogenates. N-terminally acetylated full-length α-syn (Ac-α-syn?????) and two N-terminally acetylated C-terminally truncated forms of α-syn (Ac-α-syn????? and Ac-α-syn?????) were found. The different forms of α-syn were further studied by Western blotting in brain tissue homogenates from the temporal cortex Brodmann area 36 (BA36) and the dorsolateral prefrontal cortex BA9 derived from controls, patients with DLB and PD with dementia (PDD). Quantification of α-syn in each brain tissue fraction was performed using a novel enzyme-linked immunosorbent assay (ELISA).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号