全文获取类型
收费全文 | 4623篇 |
免费 | 342篇 |
国内免费 | 1篇 |
专业分类
4966篇 |
出版年
2023年 | 23篇 |
2022年 | 49篇 |
2021年 | 88篇 |
2020年 | 58篇 |
2019年 | 65篇 |
2018年 | 95篇 |
2017年 | 90篇 |
2016年 | 157篇 |
2015年 | 203篇 |
2014年 | 229篇 |
2013年 | 315篇 |
2012年 | 378篇 |
2011年 | 358篇 |
2010年 | 227篇 |
2009年 | 195篇 |
2008年 | 288篇 |
2007年 | 304篇 |
2006年 | 266篇 |
2005年 | 251篇 |
2004年 | 218篇 |
2003年 | 193篇 |
2002年 | 197篇 |
2001年 | 45篇 |
2000年 | 24篇 |
1999年 | 39篇 |
1998年 | 64篇 |
1997年 | 27篇 |
1996年 | 37篇 |
1995年 | 47篇 |
1994年 | 25篇 |
1993年 | 40篇 |
1992年 | 29篇 |
1991年 | 24篇 |
1990年 | 17篇 |
1989年 | 8篇 |
1988年 | 12篇 |
1987年 | 21篇 |
1986年 | 16篇 |
1985年 | 17篇 |
1984年 | 17篇 |
1983年 | 15篇 |
1982年 | 15篇 |
1981年 | 17篇 |
1980年 | 18篇 |
1977年 | 10篇 |
1976年 | 12篇 |
1975年 | 17篇 |
1974年 | 10篇 |
1973年 | 10篇 |
1972年 | 11篇 |
排序方式: 共有4966条查询结果,搜索用时 46 毫秒
11.
Rita Rocha Celso M. Teixeira-Duarte João M.P. Jorge João Henrique Morais-Cabral 《Journal of structural biology》2019,205(3):34-43
RCK (regulating conductance of K+) domains are common regulatory domains that control the activity of eukaryotic and prokaryotic K+ channels and transporters. In bacteria these domains play roles in osmoregulation, regulation of turgor and membrane potential and in pH homeostasis. Whole-genome sequencing unveiled RCK gene redundancy, however the biological role of this redundancy is not well understood. In Bacillus subtilis, there are two closely related RCK domain proteins (KtrA and KtrC) that regulate the activity of the Ktr cation channels. KtrA has been well characterized but little is known about KtrC. We have characterized the structural and biochemical proprieties of KtrC and conclude that KtrC binds ATP and ADP, just like KtrA. However, in solution KtrC exist in a dynamic equilibrium between octamers and non-octameric species that is dependent on the bound ligand, with ATP destabilizing the octameric ring relative to ADP. Accordingly, KtrC-ADP crystal structures reveal closed octameric rings similar to those in KtrA, while KtrC-ATP adopts an open assembly with RCK domains forming a super-helix. In addition, both KtrC-ATP and -ADP octamers are stabilized by the signaling molecule cyclic-di-AMP, which binds to KtrC with high affinity. In contrast, c-di-AMP binds with 100-fold lower affinity to KtrA. Despite these differences we show with an E. coli complementation assay that KtrC and KtrA are interchangeable and able to form functional transporters with both KtrB and KtrD. The distinctive properties of KtrC, in particular ligand-dependent assembly/disassembly, suggest that this protein has a specific physiological role that is distinct from KtrA. 相似文献
12.
Rita Mukhopadhyay Hiranmoy BhattacharjeeBarry P. Rosen 《Biochimica et Biophysica Acta (BBA)/General Subjects》2014
Background
Aquaporins (AQPs), members of a superfamily of transmembrane channel proteins, are ubiquitous in all domains of life. They fall into a number of branches that can be functionally categorized into two major sub-groups: i) orthodox aquaporins, which are water-specific channels, and ii) aquaglyceroporins, which allow the transport of water, non-polar solutes, such as urea or glycerol, the reactive oxygen species hydrogen peroxide, and gases such as ammonia, carbon dioxide and nitric oxide and, as described in this review, metalloids.Scope of review
This review summarizes the key findings that AQP channels conduct bidirectional movement of metalloids into and out of cells.Major conclusions
As(OH)3 and Sb(OH)3 behave as inorganic molecular mimics of glycerol, a property that allows their passage through AQP channels. Plant AQPs also allow the passage of boron and silicon as their hydroxyacids, boric acid (B(OH)3) and orthosilicic acid (Si(OH)4), respectively. Genetic analysis suggests that germanic acid (GeO2) is also a substrate. While As(III), Sb(III) and Ge(IV) are toxic metalloids, borate (B(III)) and silicate (Si(IV)) are essential elements in higher plants.General significance
The uptake of environmental metalloids by aquaporins provides an understanding of (i) how toxic elements such as arsenic enter the food chain; (ii) the delivery of arsenic and antimony containing drugs in the treatment of certain forms of leukemia and chemotherapy of diseases caused by pathogenic protozoa; and (iii) the possibility that food plants such as rice could be made safer by genetically modifying them to exclude arsenic while still accumulating boron and silicon. This article is part of a Special Issue entitled Aquaporins. 相似文献13.
p53 is a human tumour suppressor which regulates multiple cellular processes, including cell growth, genomic stability and cell death. Recent works have demonstrated the bacterial redox protein azurin to enter cancer cells and induce apoptosis through p53 stabilization, resulting in a tumour growth regression. Azurin has been shown to bind p53 although many details of the complex formed by these two proteins are still poorly characterized. Here, we get insight into the kinetics of this complex formation, by exploring the interaction between p53 and azurin in their environment by single molecule force spectroscopy. To this aim, azurin has been linked to the atomic force microscope tip, whereas p53 has been immobilized onto a gold substrate. Therefore, by performing force-distance cycles we have detected specific recognition events between p53 and azurin, displaying unbinding forces of around 70 pN for an applied loading rate of 3 nN s(-1). The specificity of these events has been assessed by the significant reduction of their frequency observed after blocking the p53 sample by an azurin solution. Moreover, by measuring the rupture force as a function of the loading rate we have determined the dissociation rate constant of this complex to be approximately 0.1 s(-1). Our findings are here discussed in connection with results obtained in bulk experiments, with the aim of clarifying some molecular details of the p53-azurin complex that may help designing new anticancer strategy. 相似文献
14.
Christopher J. Grim Nur A. Hasan Elisa Taviani Bradd Haley Jongsik Chun Thomas S. Brettin David C. Bruce J. Chris Detter Cliff S. Han Olga Chertkov Jean Challacombe Anwar Huq G. Balakrish Nair Rita R. Colwell 《Journal of bacteriology》2010,192(13):3524-3533
The genomes of Vibrio cholerae O1 Matlab variant MJ-1236, Mozambique O1 El Tor variant B33, and altered O1 El Tor CIRS101 were sequenced. All three strains were found to belong to the phylocore group 1 clade of V. cholerae, which includes the 7th-pandemic O1 El Tor and serogroup O139 isolates, despite displaying certain characteristics of the classical biotype. All three strains were found to harbor a hybrid variant of CTXΦ and an integrative conjugative element (ICE), leading to their establishment as successful clinical clones and the displacement of prototypical O1 El Tor. The absence of strain- and group-specific genomic islands, some of which appear to be prophages and phage-like elements, seems to be the most likely factor in the recent establishment of dominance of V. cholerae CIRS101 over the other two hybrid strains.Vibrio cholerae, a bacterium autochthonous to the aquatic environment, is the causative agent of cholera, a life-threatening disease that causes severe, watery diarrhea. Cholera bacteria are serogrouped based on their somatic O antigens, with more than 200 serogroups identified to date (6). Only toxigenic strains of serogroups O1 and O139 have been identified as agents of cholera epidemics and pandemics; serogroups other than O1 and O139 have the potential to cause mild gastroenteritis or, rarely, local outbreaks. Genes coding for cholera toxin (CTX), ctxAB, and other virulence factors have been shown to reside in bacteriophages and various mobile genetic elements. In addition, V. cholerae serogroup O1 is differentiated into two biotypes, classical and El Tor, by a combination of biochemical traits, by sensitivity to biotype-specific bacteriophages, and more recently by nucleotide sequencing of specific genes and by molecular typing (5, 17, 19).There have been seven pandemics of cholera recorded throughout human history. The seventh and current pandemic began in 1961 in the Indonesian island of Sulawesi and subsequently spread to Asia, Africa, and Latin America; the six previous pandemics are believed to have originated in the Indian subcontinent. Isolates of the sixth pandemic were almost exclusively of the O1 classical biotype, whereas the current (seventh) pandemic is dominated by the V. cholerae O1 El Tor biotype as the causative agent, a transition occurring between 1923 and 1961. Today, the disease continues to remain a scourge in developing countries, confounded by the fact that V. cholerae is native to estuaries and river systems throughout the world (8).Over the past 20 years, several new epidemic lineages of V. cholerae O1 El Tor have emerged (or reemerged). For example, in 1992, a new serogroup, namely, O139 of V. cholerae, was identified as the cause of epidemic cholera in India and Bangladesh (25). The initial concern was that a new pandemic was beginning; however, the geographic range of V. cholerae O139 is currently restricted to Asia. Additionally, V. cholerae O1 hybrids and altered El Tor variants have been isolated repeatedly in Bangladesh (Matlab) (23, 24) and Mozambique (1). Altered V. cholerae O1 El Tor isolates produce cholera toxin of the classical biotype but can be biotyped as El Tor by conventional phenotypic assays, whereas V. cholerae O1 hybrid variants cannot be biotyped based on phenotypic tests and can produce cholera toxin of either biotype. These new variants have subsequently replaced the prototype seventh-pandemic V. cholerae O1 El Tor strains in Asia and Africa, with respect to frequency of isolation from clinical cases of cholera (27).Here, we report the genome sequence of three V. cholerae O1 variants, MJ-1236, a Matlab type I hybrid variant from Bangladesh that cannot be biotyped by conventional methods, CIRS101, an altered O1 El Tor isolate from Bangladesh which harbors ctxB of classical origin, and B33, an altered O1 El Tor isolate from Mozambique which harbors classical CTXΦ, and we compare their genomes with prototype El Tor and classical genomes. From an epidemiological viewpoint, among the three variants characterized in this study, V. cholerae CIRS101 is currently the most “successful” in that strains belonging to this type have virtually replaced the prototype El Tor in Asia and many parts of Africa, notably East Africa. This study, therefore, gives us a unique opportunity to understand why V. cholerae CIRS101 is currently the most successful El Tor variant. 相似文献
15.
Conclusion As the interactions between marine invertebrates and their bacterial commensals and symbionts are better understood, the application of biotechnology will enhance both environmental and economic benefit. In the immediate future, marine bacteria, either selected or genetically engineered, will play a significant role in enhancing the development of selected invertebrates in aquaculture and in the field. Luck may also favor discovery of mechanisms to suppress the development of biofouling species, perhaps by making it possible to coat submerged surfaces with bacterial films designed to repell larvae and/or interfere with larval morphogenesis. In any case, the future is appealing. 相似文献
16.
17.
Vairetti M Carini R De Cesaris MG Splendore R Richelmi P Bertè F Albano E 《Biochimica et biophysica acta》2002,1587(1):83-91
Liver hypoxia still represents an important cause of liver injury during shock and liver transplantation. We have investigated the protective effects of beta-alanine against hypoxic injury using isolated perfused rat livers and isolated rat hepatocyte suspensions. Perfusion with hypoxic Krebs-Henseleit buffer increased liver weight and caused a progressive release of lactate dehydrogenase (LDH) in the effluent perfusate. The addition of 5 mmol/l beta-alanine to the perfusion buffer completely prevented both weight increase and LDH leakage. These findings were confirmed by histological examinations showing that beta-alanine blocked the staining by trypan blue of either liver parenchymal and sinusoidal cells. Studies performed in isolated hepatocytes revealed that beta-alanine exerted its protective effects by interfering with Na+ accumulation induced by hypoxia. The addition of gamma-amino-butyric acid, which interfered with beta-alanine uptake by the hepatocytes or of Na+/H+ ionophore monensin, reverted beta-alanine protection in either hepatocyte suspensions or isolated perfused livers. We also observed that liver receiving beta-alanine were also protected against LDH leakage and weight increase caused by the perfusion with an hyposmotic (205 mosm) hypoxic buffer obtained by decreasing NaCl content from 118 to 60 mmol/l. This latter effect was not reverted by blocking K+ efflux from hepatocyte with BaCl(2) (1mmol/l). Altogether these results indicated that beta-alanine protected against hypoxic liver injury by preventing Na+ overload and by increasing liver resistance to osmotic stress consequent to the impairment of ion homeostasis during hypoxia. 相似文献
18.
Elsa Leitão Ana Catarina Costa Claudia Brito Lionel Costa Rita Pombinho 《Cell cycle (Georgetown, Tex.)》2014,13(6):928-940
Listeria monocytogenes (Lm) is a human intracellular pathogen widely used to uncover the mechanisms evolved by pathogens to establish infection. However, its capacity to perturb the host cell cycle was never reported. We show that Lm infection affects the host cell cycle progression, increasing its overall duration but allowing consecutive rounds of division. A complete Lm infectious cycle induces a S-phase delay accompanied by a slower rate of DNA synthesis and increased levels of host DNA strand breaks. Additionally, DNA damage/replication checkpoint responses are triggered in an Lm dose-dependent manner through the phosphorylation of DNA-PK, H2A.X, and CDC25A and independently from ATM/ATR. While host DNA damage induced exogenously favors Lm dissemination, the override of checkpoint pathways limits infection. We propose that host DNA replication disturbed by Lm infection culminates in DNA strand breaks, triggering DNA damage/replication responses, and ensuring a cell cycle delay that favors Lm propagation. 相似文献
19.
Incorporation of proteins in biomimetic giant unilamellar vesicles (GUVs) is one of the hallmarks towards cell models in which we strive to obtain a better mechanistic understanding of the manifold cellular processes. The reconstruction of transmembrane proteins, like receptors or channels, into GUVs is a special challenge. This procedure is essential to make these proteins accessible to further functional investigation. Here we describe a strategy combining two approaches: cell-free eukaryotic protein expression for protein integration and GUV formation to prepare biomimetic cell models. The cell-free protein expression system in this study is based on insect lysates, which provide endoplasmic reticulum derived vesicles named microsomes. It enables signal-induced translocation and posttranslational modification of de novo synthesized membrane proteins. Combining these microsomes with synthetic lipids within the electroswelling process allowed for the rapid generation of giant proteo-liposomes of up to 50 μm in diameter. We incorporated various fluorescent protein-labeled membrane proteins into GUVs (the prenylated membrane anchor CAAX, the heparin-binding epithelial growth factor like factor Hb-EGF, the endothelin receptor ETB, the chemokine receptor CXCR4) and thus presented insect microsomes as functional modules for proteo-GUV formation. Single-molecule fluorescence microscopy was applied to detect and further characterize the proteins in the GUV membrane. To extend the options in the tailoring cell models toolbox, we synthesized two different membrane proteins sequentially in the same microsome. Additionally, we introduced biotinylated lipids to specifically immobilize proteo-GUVs on streptavidin-coated surfaces. We envision this achievement as an important first step toward systematic protein studies on technical surfaces. 相似文献
20.
δ-Tocopherylquinone (δTQ) content was determined in tobacco and yellow maple leaves, green ivy leaves and cactus tissues. It was found that the concentration of δ-TQ was highest in mature or senescent tissues, such as white tobacco leaves (0.02 μmole/g dry wt) while its detection was uncertain in young, green leaves from the apex of tobacco plants. Fractionation by centrifugation of senescent tobacco leaves showed that the osmiophilic globule fraction was enriched in δ-TQ. Electron microscope studies of young, mature and senescent tobacco tissues showed progressive changes in the size and number of osmiophilic globules. After chloroplast breakdown in senescent tobacco leaves, these globules became the predominant constituents of the organelle. δ-TQ which is associated with osmiophilic globules may play a role in the development of plants, particularly during senescence. 相似文献