首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   341篇
  免费   18篇
  359篇
  2022年   2篇
  2021年   3篇
  2020年   6篇
  2019年   5篇
  2018年   4篇
  2017年   7篇
  2016年   11篇
  2015年   15篇
  2014年   19篇
  2013年   23篇
  2012年   24篇
  2011年   21篇
  2010年   10篇
  2009年   19篇
  2008年   22篇
  2007年   18篇
  2006年   17篇
  2005年   13篇
  2004年   20篇
  2003年   16篇
  2002年   17篇
  2001年   5篇
  2000年   4篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1996年   6篇
  1995年   5篇
  1994年   5篇
  1993年   2篇
  1992年   5篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1976年   1篇
  1974年   1篇
排序方式: 共有359条查询结果,搜索用时 0 毫秒
81.
Neuronostatin, a recently discovered peptide encoded by somatostatin gene, is involved in regulation of neuronal function, blood pressure, food intake, and drinking behavior. However, the biological effects of neuronostatin on cardiac myocytes are not known, and the intracellular signaling mechanisms induced by neuronostatin remain unidentified. We analyzed the effect of neuronostatin in isolated perfused rat hearts and in cultured primary cardiomyocytes. Neuronostatin infusion alone had no effect on left ventricular (LV) contractile function or on isoprenaline- or preload-induced increase in cardiac contractility. However, infusion of neuronostatin significantly decreased the positive inotropic response to endothelin-1 (ET-1). This was associated with an increase in phosphorylation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase (JNK). Treatment of both neonatal and adult cardiomyocytes with neuronostatin resulted in reduced cardiomyocyte viability. Inhibition of JNK further increased the neuronostatin-induced cell death. We conclude that neuronostatin regulates cardiac contractile function and cardiomyocyte survival. Receptors for neuronostatin need to be identified to further characterize the biological functions of the peptide.  相似文献   
82.

Background and Aims

Plants are expected to maximize their net photosynthetic gains and efficiently use available resources, but the fundamental principles governing trade-offs in suites of traits related to resource-use optimization remain uncertain. This study investigated whether Acer saccharum (sugar maple) saplings could maximize their net photosynthetic gains through a combination of crown structure and foliar characteristics that let all leaves maximize their photosynthetic light-use efficiency (ɛ).

Methods

A functional–structural model, LIGNUM, was used to simulate individuals of different leaf area index (LAIind) together with a genetic algorithm to find distributions of leaf angle (LA) and leaf photosynthetic capacity (Amax) that maximized net carbon gain at the whole-plant level. Saplings grown in either the open or in a forest gap were simulated with Amax either unconstrained or constrained to an upper value consistent with reported values for Amax in A. saccharum.

Key Results

It was found that total net photosynthetic gain was highest when whole-plant PPFD absorption and leaf ɛ were simultaneously maximized. Maximization of ɛ required simultaneous adjustments in LA and Amax along gradients of PPFD in the plants. When Amax was constrained to a maximum, plants growing in the open maximized their PPFD absorption but not ɛ because PPFD incident on leaves was higher than the PPFD at which ɛmax was attainable. Average leaf ɛ in constrained plants nonetheless improved with increasing LAIind because of an increase in self-shading.

Conclusions

It is concluded that there are selective pressures for plants to simultaneously maximize both PPFD absorption at the scale of the whole individual and ɛ at the scale of leaves, which requires a highly integrated response between LA, Amax and LAIind. The results also suggest that to maximize ɛ plants have evolved mechanisms that co-ordinate the LA and Amax of individual leaves with PPFD availability.  相似文献   
83.
84.
Pinniped phylogeny and a new hypothesis for their origin and dispersal   总被引:3,自引:0,他引:3  
The relationships and the zoogeography of the three extant pinniped families, Otariidae (sea lions and fur seals), Odobenidae (one extant species, the walrus), and Phocidae (true seals), have been contentious. Here, we address these topics in a molecular study that includes all extant species of true seals and sea lions, four fur seals and the walrus. Contrary to prevailing morphological views the analyses conclusively showed monophyletic Pinnipedia with a basal split between Otarioidea (Otariidae+Odobenidae) and Phocidae. The northern fur seal was the sister to all remaining otariids and neither sea lions nor arctocephaline fur seals were recognized as monophyletic entities. The basal Phocidae split between Monachinae (monk seals and southern true seals) and Phocinae (northern true seals) was strongly supported. The phylogeny of the Phocinae suggests that the ancestors of Cystophora (hooded seal) and the Phocini (e.g. harp seal, ringed seal) adapted to Arctic conditions and ice-breeding before 12 MYA (million years ago) as supported by the white natal coat of these lineages. The origin of the endemic Caspian and Baikal seals was dated well before the onset of major Pleistocene glaciations. The current findings, together with recent advances in pinniped paleontology, allow the proposal of a new hypothesis for pinniped origin and early dispersal. The hypothesis posits that pinnipeds originated on the North American continent with early otarioid and otariid divergences taking place in the northeast Pacific and those of the phocids in coastal areas of southeast N America for later dispersal to colder environments in the N Atlantic and the Arctic Basin, and in Antarctic waters.  相似文献   
85.
A number of studies show contrasting results in how plant species with specific life‐history strategies respond to fragmentation, but a general analysis on whether traits affect plant species occurrences in relation to habitat area and isolation has not been performed. We used published data from forests and grasslands in north‐central Europe to analyse if there are general patterns of sensitivity to isolation and dependency of area for species using three traits: life‐span, clonality, and seed weight. We show that a larger share of all forest species was affected by habitat isolation and area as compared to grassland species. Persistence‐related traits, life‐span and clonality, were associated to habitat area and the dispersal and recruitment related trait, seed weight, to isolation in both forest and grassland patches. Occurrence of clonal plant species decreased with habitat area, opposite to non‐clonal plant species, and long‐lived plant species decreased with grassland area. The directions of these responses partly challenge some earlier views, suggesting that further decrease in habitat area will lead to a change in plant species community composition, towards relatively fewer clonal and long‐lived plants with large seeds in small forest patches and fewer clonal plants with small seeds in small grassland patches. It is likely that this altered community has been reached in many fragmented European landscapes consisting of small and isolated natural and semi‐natural patches, where many non‐clonal and short‐lived species have already disappeared. Our study based on a large‐scale dataset reveals general and useful insights concerning area and isolation effects on plant species composition that can improve the outcome of conservation and restoration efforts of plant communities in rural landscapes.  相似文献   
86.
Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km2 to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally, these data should be sampled to reflect variation in the underlying environment across large spatial extents, and at fine spatial resolution. Simplified ecosystems where there are relatively few interacting species and sometimes a wealth of existing ecosystem monitoring data (e.g. arctic, alpine or island habitats) offer settings where the development of modelling tools that account for biotic interactions may be less difficult than elsewhere.  相似文献   
87.
The purpose of this study was to test the applicability of n-in-one (cocktail) incubations in the determination of intrinsic clearance (Cl(int)) as the slope of the linear portion of the Michaelis-Menten curve (velocity V vs. substrate concentration [S]) where substrate concentrations were low. A rapid, sensitive, and selective liquid chromatography tandem mass spectrometry (LC/MS/MS) method was developed for the analysis of samples produced by single-substrate and n-in-one (seven substrates: entacapone, 17beta-estriol, umbelliferone, 4-methylumbelliferone, tolcapone, hydroxyquinoline, and paracetamol) incubations conducted in 96-well plates with different recombinant UDP-glucuronosyltransferases (UGTs). The Cl(int) values obtained with n-in-one incubations were compared with those obtained in single-compound incubations and with V(max)/K(m) values determined by estimating the enzyme kinetic parameters V(max) and K(m) from the Michaelis-Menten curve. When substrate concentrations were well below their K(m) values, Cl(int) values determined as the slope of the linear part of the Michaelis-Menten fitting correlated well with the values determined as V(max)/K(m) ratios from the Michaelis-Menten curve. The correlation between Cl(int) values determined in single-substrate and n-in-one incubations was high as well. Together, the n-in-one incubations, the determination of Cl(int) values as the slope of the linear part of the Michaelis-Menten fitting, and LC/MS/MS as an analytical method proved to be effective approaches for increasing throughput in the first-phase screening of metabolic properties.  相似文献   
88.
Aim To provide a quantitative spatial analysis of the riverscape (open‐water bodies and their surrounding areas) of the Western Amazonian lowlands using a consistent surface of remotely sensed imagery. Taking into account the essential significance of fluvial environments for the Amazonian biota, we propose that an enhanced understanding of the Amazonian riverscape will provide new insight for biogeographical studies in the region and contribute to the understanding of these megadiverse tropical lowlands. Location An area of 2.2 million km2 covering the Western Amazonian lowlands of the Andean foreland region, i.e. the upper reaches of the Amazon river system. Areas in Colombia, Venezuela, Ecuador, Peru, Brazil and Bolivia between longitudes 83 °W and 65 °W and latitudes 5 °N and 12 °S are included. Methods A mosaic of 120 Landsat TM satellite images was created with 100‐m resolution, and water areas of over 1 ha in size or c. 60 m in width were extracted using a simple ratio threshold applicable to a large set of data. With this method, 99.1% of the water areas present in 30‐m imagery were mapped with images with 100‐m resolution. Water pixels of distinct river segments were assigned to river classes on the basis of their channel properties, and islands and lakes were distinguished separately and classified. Measures of water patterns such as structure, composition, richness and remoteness were provided for various spatial units. Riverine corridors were computed from the open‐water mask by outer limits of active channels and floodplain lakes. Analytical results are shown as both thematic maps and statistics. Results A total of 1.1% of Western Amazonia is covered by open‐water bodies over 1 ha in size or 60 m in width. River‐bound waters comprise 98% of the total water surface. Whilst isolated lakes are scarce, river‐bound oxbow and backchannel lakes are plentiful, comprising 17.5% of all waters. They are particularly frequent along meandering channels, which dominate both in area and length. The riverine corridors including active channels and floodplain lakes cover 17% of the land area. The average distance from any point of land to the nearest water is 12 km. Geographically speaking, the distribution of waters is uneven across the region, and the detailed characteristics of the riverscape are geographically highly variable. Three major, fluvially distinct regions can be identified: central Western Amazonia, the south, and the north‐east. The proportional surface areas of the riverine corridors, numbers of lakes, sizes of islands and their distributions depend largely on the types and sizes of the rivers. Main conclusions Our results support the notion of Western Amazonia as a dynamic, highly fluvial environment, highlighting and quantifying considerable internal variation within the region in terms of fluvial patterns and the processes that they reflect and control. Biogeographically, the variety of types of fluvial environments and their characteristics are important constituents of what influences the distribution of species and dynamics of terrestrial habitats. Spatially consistent riverscape data can serve as a consistent and scalable source of relevant information for other biogeographical approaches in the region.  相似文献   
89.
Aim The role of biotic interactions in influencing species distributions at macro‐scales remains poorly understood. Here we test whether predictions of distributions for four boreal owl species at two macro‐scales (10 × 10 km and 40 × 40 km grid resolutions) are improved by incorporating interactions with woodpeckers into climate envelope models. Location Finland, northern Europe. Methods Distribution data for four owl and six woodpecker species, along with data for six land cover and three climatic variables, were collated from 2861 10 × 10 km grid cells. Generalized additive models were calibrated using a 50% random sample of the species data from western Finland, and by repeating this procedure 20 times for each of the four owl species. Models were fitted using three sets of explanatory variables: (1) climate only; (2) climate and land cover; and (3) climate, land cover and two woodpecker interaction variables. Models were evaluated using three approaches: (1) examination of explained deviance; (2) four‐fold cross‐validation using the model calibration data; and (3) comparison of predicted and observed values for independent grid cells in eastern Finland. The model accuracy for approaches (2) and (3) was measured using the area under the curve of a receiver operating characteristic plot. Results At 10‐km resolution, inclusion of the distribution of woodpeckers as a predictor variable significantly improved the explanatory power, cross‐validation statistics and the predictive accuracy of the models. Inclusion of land cover led to similar improvements at 10‐km resolution, although these improvements were less apparent at 40‐km resolution for both land cover and biotic interactions. Main conclusions Predictions of species distributions at macro‐scales may be significantly improved by incorporating biotic interactions and land cover variables into models. Our results are important for models used to predict the impacts of climate change, and emphasize the need for comprehensive evaluation of the reliability of species–climate impact models.  相似文献   
90.
Stimulation of ectodermal organ development by Ectodysplasin-A1   总被引:11,自引:0,他引:11  
Organs developing as ectodermal appendages share similar early morphogenesis and molecular mechanisms. Ectodysplasin, a signaling molecule belonging to the tumor necrosis factor family, and its receptor Edar are required for normal development of several ectodermal organs in humans and mice. We have overexpressed two splice forms of ectodysplasin, Eda-A1 and Eda-A2, binding to Edar and another TNF receptor, Xedar, respectively, under the keratin 14 (K14) promoter in the ectoderm of transgenic mice. Eda-A2 overexpression did not cause a detectable phenotype. On the contrary, overexpression of Eda-A1 resulted in alterations in a variety of ectodermal organs, most notably in extra organs. Hair development was initiated continuously from E14 until birth, and in addition, the transgenic mice had supernumerary teeth and mammary glands, phenotypes not reported previously in transgenic mice. Also, hair composition and structure was abnormal, and the cycling of hairs was altered so that the growth phase (anagen) was prolonged. Both hairs and nails grew longer than normal. Molar teeth were of abnormal shape, and enamel formation was severely disturbed in incisors. Furthermore, sweat gland function was stimulated and sebaceous glands were enlarged. We conclude that ectodysplasin-Edar signaling has several roles in ectodermal organ development controlling their initiation, as well as morphogenesis and differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号