首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2871篇
  免费   196篇
  国内免费   201篇
  2023年   28篇
  2022年   69篇
  2021年   117篇
  2020年   80篇
  2019年   97篇
  2018年   103篇
  2017年   82篇
  2016年   120篇
  2015年   186篇
  2014年   201篇
  2013年   237篇
  2012年   245篇
  2011年   237篇
  2010年   158篇
  2009年   124篇
  2008年   144篇
  2007年   143篇
  2006年   124篇
  2005年   115篇
  2004年   102篇
  2003年   101篇
  2002年   93篇
  2001年   53篇
  2000年   33篇
  1999年   28篇
  1998年   18篇
  1997年   11篇
  1996年   14篇
  1995年   9篇
  1994年   11篇
  1993年   7篇
  1992年   13篇
  1991年   13篇
  1990年   13篇
  1989年   16篇
  1988年   6篇
  1987年   7篇
  1986年   10篇
  1985年   10篇
  1984年   6篇
  1983年   6篇
  1982年   5篇
  1981年   6篇
  1979年   5篇
  1977年   10篇
  1976年   5篇
  1975年   6篇
  1974年   5篇
  1973年   6篇
  1969年   5篇
排序方式: 共有3268条查询结果,搜索用时 31 毫秒
91.
Wogonin is a flavonoid compound extracted from Scutellaria baicalensis and is well known as a benzodiazepine receptor ligand with anxiolytic effects. Many recent studies have demonstrated that wogonin modulates angiogenesis, proliferation, invasion, and tumor progress in various cancer tissues. We further explored the mechanism of action of wogonin on cervical cancer cells that contain or lack human papillomavirus (HPV) DNA. Wogonin was cytotoxic to HPV 16 (+) cervical cancer cells, SiHa and CaSki, but not to HPV-negative cells. We demonstrated that wogonin induced apoptosis by suppressing the expressions of the E6 and E7 viral oncogenes in HPV-infected cervical cancer CaSki and SiHa cells. The modulation of p53 and protein retinoblastoma (pRb) were also triggered by the suppression of E6 and E7 expressions. However, p53 was not altered in HPV-negative cervical cancer C33A cells. Moreover, wogonin modulated the mitochondrial membrane potential and the expression of pro- and anti-apoptotic factors such as Bax and Bcl-2. Wogonin also provoked the cleavage of caspase-3, caspase-9, and poly ADP ribose polymerase. After transfection of siRNAs to target E6 and E7, additional restoration of p53 and pRb was not induced, but processing of caspases and PARP was increased compared with wogonin treatment alone. Together, our findings demonstrated that wogonin effectively promotes apoptosis by downregulating E6 and E7 expressions and promoting intrinsic apoptosis in human cervical cancer cells.  相似文献   
92.
Glycoproteins have various biological functions including enzymatic activity, protein stability and others. Due to the presence of paucimannosidic N-linked glycans, recombinant proteins from an insect cell expression system may not be suitable for therapeutic use. Because baculovirus expression systems (BESs) are used to produce recombinant proteins, it is of interest to modify the endogenous N-glycosylation pathway in insects to mimic that of mammals. Using a soaking RNAi sensitive cell line, BmN4-SID1, has enabled us to suppress Bombyx mori FDL (BmFDL), an N-linked glycan-specific β-N-acetylglucosaminidase. Western blotting and MALDI-TOF MS demonstrated that the BmFDL depletion almost completely converted the paucimannosidic structures of the recombinant proteins produced by BES into a complex-type structure. This highly efficient, simple and low-cost method can be used for mass production of secretion proteins with complex-type N-linked glycans.  相似文献   
93.
The accumulation of viral RNA depends on many host cellular factors. The hexagonal peroxisome (Hex1) protein is a fungal protein that is highly expressed when the DK21 strain of Fusarium graminearum virus 1 (FgV1) infects its host, and Hex1 affects the accumulation of FgV1 RNA. The Hex1 protein is the major constituent of the Woronin body (WB), which is a peroxisome-derived electron-dense core organelle that seals the septal pore in response to hyphal wounding. To clarify the role of Hex1 and the WB in the relationship between FgV1 and Fusarium graminearum, we generated targeted gene deletion and overexpression mutants. Although neither HEX1 gene deletion nor overexpression substantially affected vegetative growth, both changes reduced the production of asexual spores and reduced virulence on wheat spikelets in the absence of FgV1 infection. However, the vegetative growth of deletion and overexpression mutants was increased and decreased, respectively, upon FgV1 infection compared to that of an FgV1-infected wild-type isolate. Viral RNA accumulation was significantly decreased in deletion mutants but was significantly increased in overexpression mutants compared to the viral RNA accumulation in the virus-infected wild-type control. Overall, these data indicate that the HEX1 gene plays a direct role in the asexual reproduction and virulence of F. graminearum and facilitates viral RNA accumulation in the FgV1-infected host fungus.  相似文献   
94.
This research was conducted to distinguish between the separate effects of the Phanerochaete chrysosporium inoculation and sample property heterogeneity induced by different inoculation regimes on the indigenous bacterial communities during agricultural waste composting. P. chrysosporium was inoculated during different phases. The bacterial community abundance and structure were determined by quantitative PCR and denaturing gradient gel electrophoresis analysis, respectively. Results indicated a significant stimulatory effect of P. chrysosporium inoculation on the bacterial community abundance. The bacterial community abundance significantly coincided with pile temperature, ammonium, and nitrate (P?<?0.006). Variance partition analysis showed that the P. chrysosporium inoculation directly explained 20.5 % (P?=?0.048) of the variation in the bacterial communities, whereas the sample property changes induced by different inoculation regimes indirectly explained up to 35.1 % (P?=?0.002). The bacterial community structure was significantly related to pile temperature, water-soluble carbon (WSC), and C/N ratio when P. chrysosporium were inoculated. The C/N ratio solely explained 7.9 % (P?=?0.03) of the variation in community structure, whereas pile temperature and WSC explained 7.7 % (P?=?0.026) and 7.5 % (P?=?0.034) of the variation, respectively. P. chrysosporium inoculation affected the indigenous bacterial communities most probably indirectly through increasing pile temperature, enhancing the substrate utilizability, and changing other physico-chemical factors.  相似文献   
95.
96.
A modified metabolic model for mixed culture fermentation (MCF) is proposed with the consideration of an energy conserving electron bifurcation reaction and the transport energy of metabolites. The production of H2 related to NADH/NAD+ and Fdred/Fdox is proposed to be divided in three processes in view of energy conserving electron bifurcation reaction. This assumption could fine‐tune the intracellular redox balance and regulate the distribution of metabolites. With respect to metabolite transport energy, the proton motive force is considered to be constant, while the transport rate coefficient is proposed to be proportional to the octanol–water partition coefficient. The modeling results for a glucose fermentation in a continuous stirred tank reactor show that the metabolite distribution is consistent with the literature: (1) acetate, butyrate, and ethanol are main products at acidic pH, while the production shifts to acetate and propionate at neutral and alkali pH; (2) the main products acetate, ethanol, and butyrate shift to ethanol at higher glucose concentration; (3) the changes for acetate and butyrate are following an increasing hydrogen partial pressure. The findings demonstrate that our modified model is more realistic than previous proposed model concepts. It also indicates that inclusion of an energy conserving electron bifurcation reaction and metabolite transport energy for MCF is sound in the viewpoint of biochemistry and physiology. Biotechnol. Bioeng. 2013; 110: 1884–1894. © 2013 Wiley Periodicals, Inc.  相似文献   
97.
A Gram-positive, moderately halotolerant, rod-shaped bacterium, designated YIM 94025T, was isolated from a soil sample from a salt lake in Xinjiang province, north-west China. Strain YIM 94025T was observed to grow at 25–45 °C (optimum 37 °C), 0–22 % NaCl (optimum 2–10 %) and pH 6.0–9.0 (optimum pH 8.0). Phylogenetic analyses based on 16S rRNA gene sequences revealed that the organism belongs to the genus Tenuibacillus and exhibited sequence similarity of 98.0 % to the closest type strain, Tenuibacillus multivorans AS 1.3442T. The predominant menaquinone was found to be MK-7; the cell-wall peptidoglycan diamino acid was meso-diaminopimelic acid; the polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, an unidentified phospholipid and an unknown lipid; and the major fatty acids were found to contain iso-C15:0, anteiso-C15:0 and iso-C16:0. The chemotaxonomic characteristics of strain YIM 94025T are consistent with those of the genus Tenuibacillus. The level of DNA–DNA relatedness value between YIM 94025T and T. multivorans AS 1.3442T was 36.6 ± 4.5 %. The G+C content of the strain YIM 94025T was determined to be 38.5 %. Based on the comparative analysis of physiological, biochemical and chemotaxonomic data, as well as DNA–DNA hybridization results, the isolate is considered to represent a novel species of the genus Tenuibacillus, for which the name Tenuibacillus halotolerans sp. nov., is proposed, with the type strain of YIM 94025T (=CCTCC AB 2012860T = KCTC 33046T).  相似文献   
98.
Retinoid X receptor (RXR) and Histone deacetylase (HDAC) are considered important targets for anti-cancer therapy due to their crucial roles in genetic or epigenetic regulations of cancer development and progression. Here, we have designed and synthesized a novel compound which targets both RXR and HADC. This dual-targeting agent is derived from bexarotene and suberoylanilide hydroxamic acid (SAHA), prototypical RXR agonist and HDAC inhibitor, respectively. Molecular docking studies demonstrate that this agent has a relatively strong affinity to RXR and HADC. Importantly, it presents the potentials of activation of RXR and inhibition of HDAC in both cell-free and whole-cell assays, and displays anti-proliferative effect on representative cancer cell lines and drug-resistant cancer cell lines.  相似文献   
99.
The Tudor-sn protein, which contains four staphylococcal nuclease domains and a Tudor domain, is a ubiquitous protein found in almost all organisms. It has been reported that Tudor-sn in mammals participates in various cellular pathways involved in gene regulation, cell growth, and development. In insects, we have previously identified a Tudor-sn ortholog in the silkworm, Bombyx mori, and detected its interactions between with Argonaute proteins. The role of Tudor-sn in silkworm, however, still remains largely unknown. In this study, we demonstrated that silkworm Tudor-sn is a stress granule (SG) protein, and determined its interactions with other SG proteins using Bimolecular Fluorescence Complementation assay and Insect Two-Hybrid method. Depletions of Argonaute proteins and SG-marker protein Tia1 by RNAi impaired the involvement of Tudor-sn in the SG formation. Protein domain deletion analysis of Tudor-sn demonstrated that SN2 is the key domain required for the aggregation of Tudor-sn in SGs.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号